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ABSTRACT

Discrete data sources arising from real problems are
generally characterized by only partially known and varying
statistics, This report provides the development and analysis
of some practical adaptive techniques for the efficient noise-
less coding of a broad class of such data sources,.

Specifically, algorithms are developed for coding discrete
memoryless sources which have a known symbol probability
ordering but unknown probability values, A general applica-
bility of these algorithms to solving practical problems is
obtained because most real data sources can be simply trans-
formed into this form by appropriate preprocessing.

These algorithms have exhibited performance only slightly
above all entropy values when applied to real data with stationary
characteristics over the measurement span, However, perfor-
mance considerably under a measured average data entropy may
be observed when data characteristics are changing over the
measurement span, The latter observation is a result of the
ability to adjust to both short term and long term variations
in data characteristics.

These techniques are applicable to virtually any alphabet
size arising in practice. A subset of these results is the speci-

fication and analysis of a large class of efficient adaptive coders
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for a binary memoryless source which is characterized by
unkunown or varying statistic Py (probability of a zero). Again,
performance will be slightly above the binary entropy function
when Py is unchanging but will typically be well under a mea-
sured averaye binary entropy when Py is changing over the
measurement span,

These techniques are both casy to use and amenable to
practical high rate implementations. Functions of sums of
data samples provide tight bounds to algorithm performance.
Thus investigations of the effects of alternative algorithm or
preprucessing configurations can be accoinplished without the
need for complete coder simulations. These same functions
also serve to simplify internal decision making. Partially
as a result of the unique cascadirg of variable length coding
operations, the only implementation requirement for storage
of code words is eight binary codewords of which the Jongest

is five bits.
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I. INTRODUCTION

The basic problem we are addressing is one in which discrete data
sources are to be coded into binary representations from which the original can
be retrieved precisely., Thus these binary mappings are reversible. Standard
binary representations of a fixed number of bits/sample is the most obvious
and well known example of such mappings.

The statistical characteristics of most real data sources is such that cer-
tain things happen more often than others. Then, quite intuitively, it should be
possible to reduce the average number of bits required by representing the
frequently occurring events with fewer bits than the infrequent ones, Indeed
this is the case,

The vast majority of practical attempts at coding of real sources to
remove this inherent statistical redundancy have used a particular approach,
with quite predictable results. Specifically, after reversible preprocessing
to produce a near memoryless source (take differences from predicted values,
run lengths, etc.) the usual approach to coding has been to determine a proba-
bility distribution and then use the famous Huffman algorithm to obtain an
"optimum'' variable length code. Unfortunately, this optimality is quite
restrictive, The Huffman derived code would give the best average performance
of any single prefix code (lowest bits/sample) on a source for which symbols
always occurred according to the assumed probability distribution, But the
statistical characteristics of almost any real data sovr.e change with time,
sometimes dramatically, The assumed probability distribution used to derive
and perhaps test the Huffman code might be utterly wrong part of the time when
monitored over a very long sequence. At the same time it may siniply be a

distribution which is the result of averaging out many short term variations in



data characteristics. The point here is that there is room for improvement by
adapting the coding procedures to fit the changing data characteristics.
The theoreticians have only recently started attacking this problem in

(1]

earnest under the name '""universal noiseless coding. " A set of praccical
acaptive variable length coding procedures was developed some time
ago[Z]’ (3] for the specific task of providing efficient coding of spacecrait
imaging data where exact reproduction was a requirement, These algorithms
would now come under most people's definition of universul noiseless coding,
However, because of the .ather specialized nature of the spacecraft application
the practical versatility of these algorithms to efficiently code a wide variety
of data sources has often been overlooked. This report will reintroduce them
in a way which will hopefully make their general applicability both obvious and
easy to accomplish, Using these algorithms as building blocks, more sophisti-
cated coding systems offering additional performance benefits will be developed.
The latter results are currently used in an imaging data compression system
called RM2 4= (8],
PROBLEM DEFINITION AND BACKGROUND

This section provides further discussion of the practical problem that
subsequent chapters will address as well as the preliminary notation necessary
to proceed.

Some Basic Notation Conventions

Concatenation, If X and ¥ are two sequences of samples then we can form

a new sequence Z by running them back to back as

Z=5(*? (1-1)

using the asterisk as our basic indication of concatenation. However, we will

occasionally amit the * where no confusion should result,

2



Length c. a Sequence, Any sequence of non-b ..«vy samples can be

represented by a sequence of bits using the familiar standard binary represen-
tations which use a fixed number of bits, Without any anticipated confusion
operator ¥’ (-) will be used to specify the length of such a sequence in samples
or in bits (of its standard binary representation). Then if X is a sequence of

J samples

L (X) = J samples (1-2)
and if the standard binary representation of X required 6 bits/sample

L(X) = 6J bits (1-3)

If X is already a binary sequence (e.g., the result of coding) then #'(X) will
simply mean the length of X in bits,

General Form of Reveisible Operators

It is instructive to characterize the general foria trat reversible operators
will take, Subsequent developments will seem much less abstract. Let Z be
some sequence of, pcssibly co.related, data, and let m be a priori or side

information about Z, Then a reversible operator of Z would take the form

' a

7 =FlZ,#] = fl[Z,n] fz[z,n] (1-4)

Each of the .f..li' »+] represent mapping operations of Z and m which individually
may not be reversible, but if all the f [Z,n] and ™ are available then Z may be
— i

recovered precisely, Thatis, F[*:+] has an inverse,

PRRRPIENY Y



When
YUZYY < P(Z) (1-5)

in bits then we have achieved a more efficient binary representation of Z. If

this is true for many different z,F[' , ] may be a useful code operator,

Whether this is true or not, 7' can always be viewed as a sequence of symbols
to which reversible operators of the form in (1-4) can be applied, Thus we

might generate
zv = p(Z'a) = F[FlZ, 7] (1-6)

or by relabeling

~

Zn = Fr[Z 7] (1-7)

Again, if Z(Z") < ¥(Z) for many different Z sequences, operator F"[-:+] may
also be a useful code operator. We will make use of these observations in
later chapters. Complex sequeace code operators will be built up from simpler
ones.

A Notational Convention

The code operator struciures that we will develop and are interested in
identifying generally have rnany possible alternative internal parameters. Quite
obviously, carrying all these parameters within discussions and block diagrams
would present an unwieldy, if not impossible, notation problem. To avoid this
we will simply omit explicit reference to internal parameters when naming
operators. We adopt the convention of subscripting and superscripting the
syraboly {and occasional other symbhols) to identify operators (structures) and

tmplicitly assume that a detailed specification can be obtained by reference to



a corresponding parameter string. The development of ''the Basic Compressor'
in Chapter II will be used as a vehicle for introducing this convention.

Simplifying the Problem

A great many practical coding problems which may look quite different on
the surface can be transformed into coding prob!ems with very similar charac-
teristics. Consequently, a solution to a transformed coding problem can have
general applicability, The form of this transformed coding problem will be
developed in subsequent paragraphs.

Removing correlation, In real problems where samples of Z are corre-

lated with themselives or a priori information w, there is usually some simple
transformation which results in new sequences Z' such that the samples are
approximately independent. More important, the uncertainty in what the sample
values will be is usually greatly reduced. The less uncertainty there is the
greater the potential for reducing the average bits required to code. This step
is crucial in many practical problems but we will, for the most part,
assume it is already accomplished. That is, data sequences will be assumed
to be from approximately memoryless sources (no correclation). The user
of algorithms to be developed here would then precede them with appropriate
correlation removing transformations: operators of the form in (1-4),
Examples of correlation removing transformatiors abound. Taking dif-
ferences between adjacent samples along a TV line results in approximately
independent difference samples which tend to be tightly distributed about zero
(less uncertainty), A priori information might be the preceding line; appro-
priate use of this ardditional information generally leads to a similar result bnt
with samples more tightly distributed about zero (less uncertainty still), A
sequence of samples might also be successive states of a Markov Source or

run lengths from a run length coder,



Symbol labeling. Given q possible symbols from some source it is a

simple matter to relabel them into the numbers 0,1,2,**°g-1. Unless noted
ctherwise we will assume that such relabeling has already been done.

Symbol probability ordering, As part of the same problem, let P= {pi}

be the probability distribution of symbols 0,1,2, *** q-1. For a wide class of
practical problems the probability ordering of symbols after correlation
reducing operations is a priori known (or at least well approximated). In fact,
this ordering tends to remain the same (or close) even as the actual P may be
changing quite dramatically (e.g.. consider again the independent difference
samples along a TV scan line), It is again a simple matter to relabel source

symbols, if necessary. so that the following conditions are well approximated.

P2 P 2P, <" =P (1-8)

q-1

Preprocessing summary. Thus we will generally assume that data to be

coded has been preceded by the reversible preprocessing operations summarized
in Fig. 1-1.
Changing P

If the symbol probability distributions resulting from the preprocessing
operations just described were always known and fixed then there would be
little need to proceed any further. The standard procedure of using the

[9]

Huffman algorithm'’’ to derive an optimum variable length code for the known
distribution P would yield coding efficiency about as good as could be expected
(unless of course there is : .m for improvement of the preprocessing operations).

However, most real world problems are best characterized by a ""changing and

poorly defined P.v
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Variations of P in real problems appear in many different ways. P may
vary simply because separate short sequences are the result of preprocessing
different data sources. There may be long and short term statistical variations
in a single data source (e.g., picture to picture variations in image data caused
by totally different scenes, different camera, lighting, etc. and local variations
for similar reasons)., Other than the approximate probability ordering, (1-8),

P may not be knowr. at all, In any case a selected "optimum' Huffman code may
perform quite poorly when the actual symbol distribution is different than the
assumed., This is basically the problem we seek a practical remedy for in
subsequent chapters.

Practical Measures of Performance

Entropy definition. Given the discrete symbol probability distribution

P= {pi} the entropy H(P) is defined by

H(P) = -E p; log, p; bits/sample (1-9)
i
When properly used, H(P) can be a useful practical tool in assessing how well
4 particular coding algorithm performs.

Interpretation of H(P). If Z is an infinite sequence of samples from a

memoryless source with fixed and known symbol probability distribution

P = {pi} then H(P) represents the minimum possible expected bits/sample
required to represent Z using any coding technique, But as we have just noted
most practical problems which can be transformed by preprocessing lato
equivalent memoryless problams (Fig, 1-1) are characterized by changing or
possibly unknown distributions. li. nractice it is generally difficult if not

impossible to meaningfully model the way in which P changes, although the fact

P R i




that it changes may be quite obvious. Consequently, the equivalent '"bounds"

for real data sources with changiag P are difficult to come by and we will not
prctend to develop any here. Instead we will principally use (1-9) as a

"practical measure of performance' rather than a bound on expected performance.
The reader may consult the theoretical literature {for performance bounds on
idealized data sources.

Except where explicitly noted, the stated performance of a particular code
operator ijl -] will be based on measured performance on real data rather than
statistical expectation based on s~me idealized model. We will genecrally use a
span of K samples much greater t;lan the length of sequence that l,bil -] operates
on. Similarly, an average symbol probability distribution, P, derived from
a histogram of the same K samples can be used to provide the desired practical
measure of performance H(P).

If the real data has a somewhat uniform statistical character over the
K samples then H(P) represents a practical bound to average per saniple per-
formance of any Lbi[‘- ]. An algorithm is performing efficiently if its measured
average performance is close to H(P). However. if data character changes
significantly over the K samplcs then average per sample performance under
the measured H(P) may be possible by adapting the coding to suit the changes,
H(F) is still a uscful guide in those cascs and docs in fact bound the best per-
formance available with a single code (e.g., a Hiffman code designed for P).
SUMMARY OF RESULTS !

The principal result of Chapter II is the devclopment of a code operatar
called the Basic Compressor which provides measured performance clos:, to
H(P) (P a priori unknown but stable over the measurement span) for values of

v

H (P) in the range of 0.7 to 4. 0 bits/sample. This operator should have broad
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applicability and Chapters III - V are examples of using it to generate new
operators with additional characteristics.

In Chapter III operators are developed which are capable of extending
these results to much higher values of H(P). Similarly, code operators are
developed in Chapter IV which are capable of providing average performance
close to 11(P) for H(P)~0 as well as the higher entropies. An outgrowth of
these developments is a class of binary memoryless coders capable of perform-
ing close to the binary entropy function as the (a priori unknown) probability of
a binary zero or une varies between 0.0 and 1.0, These binary operators are
described in Chapter V.

In all cases, performance under H(P) has been observed for these
operators when the data characteristics change substantially over the span of
samples used for measurement,

An extremely useful practical characteristic of these algorithms is that in
each case accurate estimates (actually bounds) of actual performance can be
obtained basically as simple functions of the sum of input samples, This allows
for accurate performance assessments without the need for elaborate simula-
tions involving the generation of bit streams., This can greatly simplify the
determination of various parameters (e.g., assessing a preprocessor) as well
as aiding in the creation of new algorithms (which use the Basic Compressor as

a basic tool). Additionally these same functions serve to simplify internal

decision making.

10
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II. THE BASIC COMPRESSOR

This chapter will provide the development of an algorithm for efficiently
representing blocks of J preprocessed (see Fig. 1-1) samples when P is
unknown and the measured average entropy H(P) lies in the range of roughly
0.7 to 4 bits/sample. This Basic Compressor operator will be used as a basic
tool in developing operators with additional characteristics in Chapters III - V,

As noted in Chapter I our primary means of identifying a large number of
different code operators will be to subscript and superscript the symbol ¥,
However, the first five operators U,JO[ -] - 4’4[ -} will receive dual names to avoid con-

(2], [3] The origi-

fusion to those readers familiar with the original description,
nal names offer an additional benefit of being easy to remember.

Several coding examples are given at the end of this chapter,
FUNDAMENTAL SEQUENCE

Rather than seek a code which is optimum for some particular probability
distribution, consider instead a code which is provably the simplest to implement

and determine the range of P over which it provides '"good" performance.

Define the code word operator fs[ -] by
i zeroes

D S
fs[i] = 000 . . ... 000 1 (2-1)
where i is an input symbol. The length of codeword fs[i] is

L, = f/’(fs[i]) = i+l bits (2-2)

The coding of J preprocessed sample sequence X = Xy eee Xy using

fs{-]is given as

¢1[5<] = F5[X] = fs[x,] * fs[x,] * ... * fs[x (2-3)

7]
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and will be called a fundamental sequence. We have thus defined our first code

operator for sequences by U}}l[ -] = FS[-L.

The length of a fundamental sequence is
J J
F =9 FS[X] E J+ E X (2-4)

J= =1

or simply the block size plus the sum of the input samples. Note that when X
is the all zero sequence FS[}?] represents X with J bits.

Observations

Because of the assumed probability ordering of input symbols in (1-8) and
the codeword lengths in (2-2), shorter codewords will be used more often than
longer ones. As noted in Chapter I, this condition can te well approximated for
a wide variety of real problems by suitable preprocessing. The latter is neces-
sary to make the most of a given variable length code such as (2-1),

A useful practical characteristic of the particular code in (2-1) is the fact
that its definition does not depend on input alphabet size. This assures a wide

applicability of the results to follow in later paragraphs. :

FS Performance

A plot of the average per sample performance of code operator FS[-]is
shown in Fig. 2-1 as a function of measured data entropy H(P) over K samples
where K> 7,

The graph was derived from the results of preprocessing many forms of
data such that condition (1-8) was well approximated, The “act that many dis-
tributions can yield the same entropy under these loose conditions is not of any
practical significance. The graph is not intended to be that precise., The main

point is that FS[ -] performance tends to remain close to data entropy H(E in

-

ciey i Wi B VP

the range of roughi~ 1.5 to 3.0 bits/sample, If H(I_D) were always restricted
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Fig, 2-1. Average FS[-] Performance
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to this range then, considering the simplicity of fs[»], there would be little
point in doing anything else. This is not always the case, however.
FOUR CODE OPTIONS

To extend good performance outside of this entropy range we could seek
to find other codes which performed well for higher and lower entropies. But
in addition we want such code operators to have the same versatility and simpli-
city as FS[*]. In particular we wish these operators to be applicable to any
practical alphabet size, q, without substantially increasing complexity., Before
defining these alternative code operators we need some additional definitions,

Additional Definitions

Sequence extension. Let ¥ = MR ZXEER A be any J sample sequence, Given

the positive integer e21 an extended sequence is formed by terminating ¥ with

enough dummy zeroes to make the resulting sequence length a multiple of e

(i. e., eE—])as in

e%] (2-5)

000... 0
——T TN T —m——

dummies

ce . -
Yo =yyp e vy

The eth extension of sequence Y is then obtained by simply grouping the

consecutive J' =[%]e-tuples of ¥¢ such as

Y' = zy 2yt 2y Ext®[¥]
= (YI Y2"' Ye)*(Ye+1Y +2"')*--°

€

aee X (YJ-]. Yy 00 ... 0) (2-6)

Tfa]means the smallest integer greater than or equal to a,

14
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If each sample of Y could take on any of q values then each sample
(except possib’y the last) of ¥' could take on any of 9 values. For our pur-
poses we will use the reversible sequence operator Ext°[-] when ¥ is binary
so that samples of Y'can take on 2% values.

As an example, let Y be the 34 sample binary sequence
Y = 1111100001111000011000000000111011 (2-7)
then the 3rd extension of Yis given as

¥ = Ext [¥] = (111) # (110) * (000) * (111) * (100)

% (001) * (100) 3 (000} #* (000) * (011) * (101) * (100) (2-8)
34 th
where we have added two dummy zeroes to complete the| == | = 12-— sample of

o~

Y'.

Complementation, Given any binary sequence we let

coMmP[-] (2-9)

denote the operation of complementing each bit of the sequence (i. e., ones
complement).

Coding FS[X]

Instead of seeking to code X directly in a standard way we instead attempt
to remove statistical redundancy that may be present in & fundamental sequence.

First let

FS [X] = comP [Fs[X]] (2-10)

15




be the result of compl. nenting each bit of fundamental sequence FS[X] and

call it "FS bar." Now define

]:Ext3 [FS[X]]

{1
[\
R

2 "t (2-11)

Ext’ [ F5I%]]

jog
n
il
o
o

(2-12)

where 2 is the [-%.]sample 3rd extension of a fundamental sequence, and bis
similarly the 3rd extension of its complement (see example in 2-7 and 2-8). By
these operations we have simply lumped the fundamental sequence, and its bit
by bit complement, into 3-tuples and added enough dummy zeroes (none, one or
two) to complete the last 3-tuple.

8-word code. A simple 3-word variable length code i- .efired in

Table 2-1.

Table 2-1, 8-word code, cfs|-]

Input Output
3-tuple Codeword
a cis[e]

000 0
001 100
010 101
100 110
011 i1100
101 11101
110 11110
111 11111

1/



If we view the bits making up a fundamental sequence as approximately
binary memoryless then 3-tuples with more zeroes will tend to occur more
often when zeroes are more likely than ones (active data), Under these condi-
tions the assignment of codeword cfs[a] to binary 3-tuple @ in Table 2-1 assures
that shorter codewords will be used more often than longer ones. Sequence 2
in (2-11) is ready for a direct application of cfs[-].

When binary ones are rnore likely than zeroes (inactive data) the situation
is reversed; 3-tuples with more ones are more likely. In this case the assign-
ment of shorter codewords in Table 2-1 to the more likely 3-tuples can be

accomplished by flipping the right-hand column over or by simply complement-

ing all input 3-tupies. Then sequernce b in (2-12) represents a preprocessed

fundamental sequence which is ready for a direct application of cfs[~-].
We are now ready to define two additional code operators called '"code fs'"

and '""code fs bar', These arc defined as follows

il

= CFS[:’]

<
Nl_—i
3
1

cfs[al] % cfs[az] e (2-13)

and

~

CcFs(X]

>
it

b

ol cfs[b)] * cfs[b,] * ... (2-14)

where the a, and bl are defined in (2-11) and (2-12).
As will be seen shortly, the fact that a binary memoryless model is not a

perfect match for a fundamental sequence is of no practical significance.

Block diagram. Block diagrams describing code operators CFS[*]and

CFS[-) ar= shown in Fig., 2-2, We maintain the dua} ..ci>*ion of 410[ ] and 412[']

for later use,
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All zero sequence. In the special case when X is the J sample all zero

sequence we have

v (crsE]) = 5[1/3] bits (2-15)
and
'/’(CJ?S[X]) = [1/3] bits (2-16)
Recall that these numbers compare with J bits required by operator
FS[- 1.

Unity Code Operator

We can trivially add a fourth code option to the possibilities by defining

y,lX1 (2-17)

as any fixed length binary representation of X. In the simplest case we can

take 4’3[3'{] as X itself.
4J3[>~(] = X (2-18)

However, recall that in many applications the X sequence we are coding is the
result of reversible preprocessing operations [.ee Fig, 1-1). The function of
such operations is to remove correlation and by relabeling, produce a symbol
stream for which the desired probability ordering in (1-8) is well approximated.
However, these operations may also effectively increase the alphabet size.

For example, taking differences between adjacent samples increases the number
of possitle sample values by two, Thus a direct fixed length binary representa-
tion of a preprocessed X sequence may actually require more bits than a direct
fixed length representation before preprocessing. In this case it would be more
advantageous to interpret ¢3[5(] as a fixed length binary representation before

reversible preprocessing.
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Keeping in mind this more general interpretation of 413[ -] we will for the
most part assume tu.e special case in (2-18).

Average Performance

A block diagram showing the four code operators ¢i[-] discussed thus far
are shown in Fig, 2-3. Measured average performance for these operators is
showr. in Fig. 2-4. The graph for FS[-] = a,;l[-] has been transferred from Fig.
2-1. Again, performance has been measured over spans of K samples much
greater than the J sample length of X. Other than making q or J too small to be
meaningful, the values of these parameters has little influence on the location
of these curves, However, an input alphabet size of q=25 was chosen to show
the fixed position of the ¢3[5(] = X curve.

The three curves for CFS[-], FS[-land CFS[-] are almost a perfect match
in the sense that when one starts performing poorly(away from the 45° entropy
line) another starts performing well. This should not be surprising since
CFS[-] and CFS[-] obtain improvements over FS[-] by coding redundancy left
in 3-tuples of FS[X]). 1f FS[- lis performing close to H(P) then there can be
little redundancy left, Otherwise CFS[-] or CFS[-]would be performing under
the entropy. For individual fixed coding algorithms this is impossible.

The main observation is that these three code operators offer options
which can provide efficient average performance when data entropies lie,
roughly, in the range of 0.7 bits/sample to 4 bits/sample. Operator definitions
do not depend on alphabet size, q. The additional unity operator, Lb3[ -1, is
available free of charge in most digital systems, Thus we should be able to
provide a sirnple yet efficient adaptive coder (universal coder) by selecting

between these four options.
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AVERAGE PERFORMANCE, BITS/SAMPLE
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Fig. 2-4. Average Performance, CFS[‘], FS[:], CFS['], 4:3[']
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ADAPTIVE CODER

We are aow ready to define an adaptive coder which selects a code option
from the four choices yyl-] = CFSI -], yl-1 = FS[-) ¢,(-] = CFS[-]and
w3l ) Letting ID be the selected code operator for a given . sample input

block a '""Basic Compressor'' output takes the form

¢4[>”<] = BC[X]= ID * ¢ [X] (2-19)

Lo ol ¢

]
where the concatenated ID is assumed to be a 2-bit binary number whereas, as

a subscript to ¢ it takes on the values 0, 1, 2 or 3, 1

Observe that ID is really a function of X which partitions the space of all
input sequences into four decision regions and takes on the corresponding values i
0, 1, 2 or 3. (Carrying the full ID[X] would obviously cause notational problems).
It remains to specify this decision rule to complete the definition of
Yyl -1 = BCI[-]in (2-19).

Optimum Decision

The most straightforward, and in fact optimum, selection procedure is to
simply choose the code operator output sequence which is the shortest. While
this might be considered brute force, the simplicity of the code options makes
this approach quite feasible in many applications. We will provide a simpler
procedure later, The optimum decision rule can be stated simply as ;

Choose ID such that

.w(q:,t,[i'(]) = min {.w(qajb"c])f (2-20) |
j i
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The Basic Compressor code operator would then require

#(BclX] )5 = 273+ #(9,,[%1) /3 (2-21)

bits/sample to code »n input data block }~( where the second part is assumed
to be the smallest of four possibilities.

The overhead cost in identifying the code choice is
2/J bits/sample (2-22)

which could obviously be diminished to insignificance by increasing J. How-
ever, other considerations guide the choice of bleck size J.

A measured average of the second term in {2-21) will tend to decrease
as J is decreased because of the atility to switch codes (adapt) more frequently.
This effect will more than compensate for increasing overhead until eventually
overhead dominates. Thus there should be a best block size., Runs on various
forms of data by the author and Spencer and May[1 J suggests that this best
block size lies in the range of 16 to 25.1L The main observation is that J is not
a critical performance paramecter and can be chosen primarily for implementa-
tion considerations, We will emphasize a block size of 16 for these reasons,

Later we will have reason to consijer variable block sizes.,

Average Performance

A graph of the measured average performance of Basic Compressor
operator ¢4[ -] = BC[+] of (2-19) using either the optimum decision criterion in
(2-20) or a simplified rule to be introduced later is shown in Fig, 2-5, As in

earlier graphs H(P) is the average measured data entropy over a span of K

TTest cases originated from image data,
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input samples, where K > I. A range of possible results is shown within

the crosshatched area, depending on the variability of data statistics over the
measurement span of K samples. When distributions are stable then average
performance slightly above H(P) is typical (e.g., 0.25 bits/sample) throughout
the range of 0.7 < H(P) € 4, However, when data distributions are quite vari-
able over the K samples then performance considerably under H(P) is possible
(we are assuming that probability ordering in (1-8) remains well approximated
as distributions vary).

Comments. Note again that J is not a critical parameter. The rough
performance description in Fig, 2-5 would generally be vnaffected provided J
is not so small that overhead becomes dominant or so large that the advantage
of adapting disappears., If alphabet size q is very small then a performance
description up to 4 bits/sample is not meaningful since a fixed length binary
representation, ¢3[-], can do better. However, Hilbert[ll]has obtained good
results using the Basic Compressor on processed data which has small q
(e.ge, q=3, 4, 5, *+).,

The main point should not be missed: the Basic Compressor can be
expected to give efficient performance over a wide range of data entropies
with no prior knowledge of distribution P (ordering in (1-8) excluded), In
later chapters we will extend efficient performance first to higher data
ertropies and subsequently to very low entropies near zero. In these cases
and others the code operators that result are essentially generated by pre-
processing data into forms which can make effective use of the Basic

Compressor.

e
!
!
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USEFUL BOUNDS AND ESTIMATEST

There are some situations where it is desirable to minimize the
computation and memory requirements needed to make Basic Compressor deci-
sions and to estimate performance. The relationships between wo[‘ 1. ‘Pl[-] and

\02[ -] may be used tc accemplish this yielding the functions of input X
‘ Tt

YO’ Yl’ YZ and Y3 where
Sy F 1 -y
Yo(X)= [§]+ 2(F -z g(vo[x]) (2-23)
v(X)= F =££(¢1[5<]) (See Eq. 2-4) (2-24)
Y, (%) = [—Fg] 272 2(4:2[5(]) (2-25)
and
v3(5()§ constant (2-26)

These are all simple functions of F which is itself just the sum of data samples

plus the Basic Compressor block length (2 -4),

T [a] means the smallest integer greater than or equal to o,

T tThe functions Y, and Y5 are trivial and Y, and Y, are easily derived. Sup-
pose ES is a string of all zeroes, then by Table 2-1 each 3-tuple is coded
into one bit so that 2(¢0[i)) = |-3£] Now start changing zeroes of FS into
ones, Each change will incrementg(wo[f(])by at most 2 bits, The increase
will be less than this only if an all ones 3-tunle is created. Since [-F—] is the

3

number of 3-tuples and F-J the number of ones in FS we get ,Q(tpo[f(])s l-%]

+ 2(F-J), Using the same argument on FS, using J in place of (F-J), yields
Y~ in (2-25).
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The relationship of the Yi(f() is shown more clearly by the straightline
approximation in Fig, 2-6. The lower envelope of these curves, shown with
heavy lines, is essentially the simplified decisi.n rule we are seeking.

Simplified Decision Rule

Instead of comparing the actual bit counts for the four options as ir (2-20)
we could instead use the following rule: Since the Yj( . ) are really functions of

I" we choose ID such that

i

T PN
Yp(F) = min V(X)| (2-27)

J

This rule simplifies further to the rule in Table 2-2 where we assume
that fixed length coding of X by '113[ ‘] requires m bits, and m > 37J.

The expression 3(m-2J) is the approximate result of solving Yz(f{) in
(2-25) for the F which gives YZ()~{) > m,

Using these rules the Basic Compressor operator, ‘1’4[ -]in (2-19), could
require no more than 2 + ym(F) bits to code X. But then certainly a coder
which used the optimum criteria in (2-20) could require no more than yID(F)
bits either. Thus le(F) may be used to bound the performance of either

system. In particular, we have
9?(¢4[>”<])= f/’(Bc[}”c])s v4(5<) =24y (F) (2-28)

We can now see that v,,(F) is the lower envelope to the carves in Fig. 2-5.
Note that there are two critical points on the graph, Below F = %J

4‘0[ ] = CFS[-] will always perform better than FS[:] = 4’1[ -] while above F =3J
(and less than 3(m-27)) 4}2[ ] = CFS[ -] will always perform better than FS[']. In

these cases the simplified decisicu criterion in(2-29)would make the same decisions

as the optimum criterion in (2-19), Between these two operating points there
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Table 2-2, Another Form of Simplified Decision RuleS

[

Condition on
Operator Fundamental Sequence
Decision Length
Yol F= 3|J/2)
0] 3{3/2) <F =33
¢2[-] 3J < F < 3(m-27J)
3l-] F 2 3(m-2J)

is some possibility that either 410[ -] or ‘4»‘2[ .] might perform better on a given

X than operator FS[-] = ¥y [-] which would be chcsen by the simplified rule. But
experience on real data has shown that the vast majority of the time FSl-lis
indeed the best choice, There is also a remote possibility that ‘#2[ -1 could
perform better than 413[ -] when F > 3(m-2J), Again, experience indicates

that 4;2[ -]is usually the best choice, Thus the difference in performance
between a Basic Compressor using the optimal decision rule and one which

uses the simplified rule seems to be insignificant from a statistical point of

view,

_Y_lD(F) as an Estimate

The measured performance of the Basic Compressor operator ¢4[ -]
shown in Fig. 2-5 is a plot of the long term average of Eq. (2-21). We have
just noted that the choice of decision rule would have a negligible impact on

these results. In addition we have the following useful observation that a long

term average of

2 YID(F)
S+ —5 (2-29)

T |e)means the greatest integer less than or equal toa.
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will tend to yield very nearly the same results. Thatis in a statistical sense

we have, for either decision rule ¥

E{’/‘(%[fi])}s 2+ E =Y,D(F): (2-30)
and

E{(/'(¢4[>~<])} =2+ E ;Y,D(F){ (2-31)

Thus tl.e bound in (2-28) is statistically tight.

This is an extremely useful result. In simple ter ns it means that Basic

Ccmpressor performance can be estimated (and bounde.1) quite closely by add-
ing up irput samples (Eq. 2-4) and then computing le(F) using the simple
expressicns in (2-23) through (2-26).
to determine pertormance.

Looser Bounds

Note from Fig. 2-6 that the function y (F) is convex n. Thus we have
ID

Efv,(F)} =y, (F) (2-32)

where

T o= E{F} (2-33)

Direct substitution in (2-30) yields a looser bound, Whereas E {Ylo(F)} takes
irto account the ability to switch codes each J samples, E{Ylo(f‘)} assumes

only the ability to pick the best of four codes once.

1 E{ . } denotes expectation.
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A practical application of (2-32) to bounding the performance of the

Basic Commnressor over a long sequence Y = AR R AN where K > J, is quite

straightforward, Determine F as

and then bound average per sample performance by

, Y (F)
e (2-59

Variable J, In all cases so far we have assumed that block size I was
fixed, However, we will later have reason to consider variable block sizes.
Here we derive a useful result for later use. First supplement the functien

Y (F)withJasin y (F.J). Ifwetix Fat I and plot y (I-':':, J) as a function
1D ID

ID(

of J we would find it 1s also convex N, Then we have

Ay (FolE = Vs 1 2- 10
L{\m(r. )| F = T }_ v (D) (2-20)
where
T = 1{} (2-37)
But then if both I’ and I vary
> I o= ety (Roaa=at
B{y (F.0)} l{r {v,(E }
<k T, 2-38
{v (F.n} (2-38)
sy (F.) (2~ 39)

.’.

Kis assumed to be a multiple of |}
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We recognize (2-38) as the previous result in (2-32). Thus (2-39)
provides a slightly weaker bound to Basic Compressor performance.
BLOCK DIAGRAM

A block diagram of the Basic Compressor using the simplified decision
rule is shown in Fig. 2-7.

EXAMPLES

Example 1
Let the input sequence block size be J=16 and the alphabet size q=16.

Then suppose
%1 =0,00,0.0,4,0,0,0.4,0.9 0.0.1,0 (2-40)

Fixed length, ;13[3'(1]. A standard binary representation of 5(1 is easily

obtained as a sequence of sixteen 4-bit codewonrds. Then, obviously

ro
t
e
[
~—

v’(%['}"( J ) = 64 (

Fundamental Sequence, t.,bl[)~( 1]. A fundamental sequence is obtained

using (2-1) and (2-3) yielding
FS[?CI] = 411[§1] =1,1,1,1,1,00001,1,1, 1,00001, 1,0000000001,1, 1, 01,1

(2-42)
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where we have separated individual codewords by commas. The length of this

"FS'" sequence can be obtained by counting or by using (2-4)

J

F = '/’(q» 1[}”;1])= J+in = 34 (2-43)

i=1

ﬁ[f(' 1] is obtained from (2-42) by complementing each bit, Sequences
2 and b in (2-11) and (2-12) are obtained by grouping the bits of FS[?( 1] and

ﬁ[il] into 3-tuples and adding enough dummy zeroes at the end to complete

the last 3-tuple.

~ 3 o
a = Ext [FS[XI]]
= 111,110,000, 111, 100, 001, 100, 000, 000, 011, 101, 100
(2-44)
~ k) ——
b = Ext [FS[X 1]]
= 000, 001, 111, 000, 011,110,011, 111,111, 100, 010, 000
(2-45)

Now applying the code cfs[-jin Table 2-1 to sequences @ and b as in

(2+13) and (2-14) respectively we get

¥, [X 1] CFs[X,]

11111,11110,0,11111,110,100,110,0,0,11100, 11101, 110

(2-46)
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and

Wo[‘\l = CFE’[X 1] i
l
= 0,100,11111,0,11100,11110,11100,11111,11111,110,101,0 {‘
(2-47) :'.
8
By adding bits in (4-40) and (4-47) or by adding codeword lengths when using !
Tatle 2-1 we get
y(az[xlj) = 40
(2-48)

Thus the optimum decision criterion of (2-20) would select
tllil] = I“S[i l]as the coded output sequence to use. ulllilj would be preceded
by a two-bit identifier for a total of 30 bits,

Using the simplified rule in (2-27) would have yiclded the same results,
Example 2

As another example take J = 20, q 216 and
N, =1,0,1,1,5,3,0,1,3,7,1,2,2,0,1,2,2,2,8,0 (2-19)
Then generating an FS and breaking it into 3-tuples as before we get

,
a = Extﬂlps[xg]] = 011,010, 100, 000, 100, 011, 010,

001, 000, 000, 010, 100, 100, 110,

-t~

100, 100, 100, 100, 000, 000, 100,

000,010 (2-50)
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Apain using Table 2-1 we could pgenerate 4»2[5'(2] = CFS[iz]. Insteaus we put
down the corresponding codeword lengths, f/"(cfs[xi]), the sum of rhich cquals

s(cFs[&,) )
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03.1,3,5,3,3,1,1,3,3,3,5,3,3,3,3,1,1,3,1, 3 (2-51)
From (2-50) and (2-51)
r = (Fs[X,]) = 68 (2-52)
and
.v’(CFS[}"(Z])= 63 (2-53)

’/’(M?)['}v(z]) 2z 80 and ‘/'(uo[f(z]) > 68 so that the optimum decision is 4:2[ -1.

Simplified test, The same decision results from the use of Table 2-2

where
60 < F < 120w, [ -] (2-54)
Estimate, Using YZ(XZ) in (2-25) we have
Uo(X,) = [F/3] +27 = 23 + 40 = 63 (2-55)
Using the result in (2-55) we see that the bound in {2-25) is achieved,
f/’(w’JZ[iz]) = Y, (X))
Example 3
Now take J=20 again but suppose }~<3 is a sequence of zeroes
X, =0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 (2-56)

3
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Using (2-4), F=20 anA

. ol
Yo (F) = Yo(X3) = [331 =7 (2-57)

Actually going through the coding nrocedures for xyo[ -] yields the seven bit

binary sequence
YO[X3] = 0000000 (2-58)
Adding two bits for identification of the code option gives from (2-19)
¢4[5<3] = Bc[fi3]= 000000000 (2-59)

Example 4

Now suppose we have the sequence

¥ = X, %X, (2-60)

where 5(2 is the sequence of example 2 and 5'(3 is the all zero sequence of

exawmple 3,

Letting \PS[ -] denote the operation of using the Basic Compressor on each

X, separately we have
) v| = < £ X 2-
v (%] = o [%,] o [X,] (2-61)
Using the previous results we have
L4
‘/’(QJS[?{]): 4+ 63+ 7 = 74 bits (2-62)

Recall that either an exact bit count or use of the estimator le(- ) yields this

result,
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Now compute the average FS length from (2->4) as

F = 5(88) = 44 (2-63)
Then using F in (2-23) to (2-26), the minimum yields
YID(f) = F (2-64)
Average performance of Y is bounded by (2-35)

2
20

1

+ 24:)‘- = 2.3 bits/sample (2-65)

This compares with actual average performance derived from (2-62)

-— = 1,85 bits/sample (2-66)

The reader can check that he would obtain essentially the same result
by coding Y directly using the Basic Compressor (i. €., 444[?] ) The overhead
term, 2/20, in (2-65) would be reduced to 2/40, The key observation is that
using 4,4[. lon all of Y gives up the ability to adjust the coding to variations in
data character, which in the case of }~(2 and 5(3 are quite extreme, Here, the
advantages of adapting are much more significant than the slight increase in
overhead,

OTHER OPERATOR DEFINITIONS

Operator ng[- ]

Let ¥ be an N sample sequence of samples which is a priori partitioned

into n smaller blocks, ?i’ so that

Y=Y, *¥, %,., Y (2-67)
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composed of Ji samples each where
N = E J. (2-68)

Then we define the block by block Basic Compressor coding of Y by the

operator \PS['] where

b(9) = 4, (Y]] = u,[¥,) e g, [€)) (2-69)

An example of 415[-] was given in (2-61),

By defining 415[ -] we have lumped all the possible lengths of Y and all the
possible ways of partitioning Y into the ?i' In most cases N and a specific
partitioning would be fixed for a given application. The most obvious and prac-
ticel situation is when N is a multiple of some fixed Basic Compressor block
size J,

Variable N, In Chapters IV and V we introduce an application for which
N is a priori unknown for eacn Y sequence but is available at a decoder for

decoding purposes (i. e., it is transmitted separately). Then we define

¢6[-J (2-70)

as a code operator which codes Y by first choosing a preselected block parti-
tioning assigned to N and then applies the corresponding form of \PS[-] to Y,
Whereas there are many possible rules for partitioning, the following seems to
be quite suitable and practical:

Partition Y into n blocks, where
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IN/T] for N=zJ

_.,
=
1]

(2-71)

1 otherwise
and the first N-1 blocks have J samples and the last, N-(n - 1)J samples. That is

(Jfor i<n
Ji = < (2-72)

(N-(n ~-1)J otherwise

Quite obviously, 4)5[ -] is a special case of tbb[ .] for which the length of ¥
is predetermined and fixed,

Performance Bounds and Estimates

The function 74(°) in (2-28) provides a useful bound and estimate of the
performance of Basic Compressor operator Y l-]. It is equally desirable, and
a simple matter, te assign similar functions to more complex operators as

they are developed. That is
% (ij[?]) - YJ_(?) and/f(q,j[?]) () (2-73)

for each t,bj[ -] As an example and a result for future use we have from the
developments above, for j =5 or 6,
"
2 (;[®) = v, (¥ = z vy(¥) (2-74)
i=1

and can expect that typically

7 (\UJ[?]) ~ Yj(‘?) (2-75)
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III, EXTENDING PERFORMANCE TO HIGH DATA ENTROPIES

Using the Basic Compressor to directly code long sequences Jrawn from
average distributions P which have entropies greater than 4 bits/sample results
in relatively inefficient performance as noted in Fig, 2-5, Thatis, the curve
for average performance will move away from H(P). This chapter addresses
that problem and provides a simple means for achieving efficient performance
at the higher entropies,

SPLIT SAMP.LES

Let M" be some sequence of N preprocessed samples for which the
probability ordering of (1-8) is satisfied, The symbol n signifies that the
standard binary representation for M" requires n bits/sample, Define the

"split sample'' operator SSm[w] by

ss™ M) = ™ % TX mitken (3-1) -
where
I~k = { N sample sequence consisting of the k least significant (3-2]
: bits of ecach sample of M® =
and
s o= N sample sequence consisting of the m = n-k most
significant bits of each sample of M (3-3)

and SS"[M™] = M7,
Clearly SS™[-] is reversible since each sample of M" can be reconstructed
by combining the corresponding samples of M™ and ik. We can therefore con-

centrate on the efficient coding of M™ and I_.k, from which M” can be retrieved,

A sample block diagram showing ss™.] is provided in Fig, 3-1.
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ENTROPY CONSIDERATIONS

Definitions

Let I’—m be the average distribution of the N m-bit sam; 1es from M,
Let B(m) denote the per sample performance of the Basic Comy ‘essor
operator appliec to sequence M™, Thatis
. ~ m
rly, [ 1)

B(m) = —— — (3-4)

N

where £= 5 or 6 (see 2-71 and 2-72),

Observations

If the distribution ﬁn on the original input samples M® approximates the
desired ordering in (1-8) then so dnes each —fm on the m most significant bit
samples. In addition as m decreases (fewer significant bits in each sainple)
thie distributions TD_m become more peaked around zero and the entropies H(?m)
decrease, For our purposes here we note irom experimental observation that

—

if I—I(Pm) exceeds approximately 4 bits/sample

mop) % BEF, ) -1 (3-5)

That is, one less bit of quantization reduces the sample cntropy by approxi-
mately one bit, This provides the key to obtaining cificient performance at
higher entropies,
Example

Suppose H(Fn) = 5.5, then we know that a direct applicat'on of the Basic
Conpresscr ueing '!-5[ -1 will uot produce efficient performance since H(Tjn) >4,
That is, B(n) is not close to H(?n).
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Applying 415[-] to I:In—l would still yield inefficient performance on the
n-1 most significant bits since by (3-5) H(—ﬁn_l) = 4,5 >4 (see Fig, 2-5),

However, H( n-Z) = 3,5 < 4 so that we can expect that the Basic Com-

pressor, via operator L}Js[ -1, will yield

B(n-2) = H(P__ (3-6)

7)
Then asing (3-5) twice we have
B(n-2) + 2 = H(P) (3-7)

This suggests that we can obtain efficient coding of the original input data M"
by coding lCIn-‘Z with the Basic Compressor and transmitting ali the least signi-
ficant bits, Iiz, separately,

SPi IT SAMPLE MODES

Definition

We define the set of uperators 3#'.;][- ] by

VI = v M TX ) g5 or 6 (3-8)

where M™ and X are defined in (3-1) - (3-3),

Block diagram., A block diagram of tbr};[- is given in Fig, 3-2,

Average Performance

The per sample performance of operator 411711[-. ] over the N samples is

given as

s(o2in)
a(m) = —_— " = f(m) + k (3-9)

Actual nicasurements of the o(m) are shown in Fig, 3-3 for n=8 bit input

samples and N large,
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ADAPTIVE OPERATOR, w1
We observe from Fig, 3-3 that at least one operator has average

performance that remains close to the average entropy line ll(I’u). Thus we

need only select the proper one to use. Define operator .,,8[- ] by

.,:S[glx]] m! ~l'l—;1'[i\~ln] (3-10)

where m' is a selected valu» of m (the concatenated m! being interpreted as a
binary munber).
. . . . . . - n .
Gbserve that m' (just like ID in (2-19) is really a function of M which
partitions the space of all input sequences into decision regions and takes on the
possible values of m, It remains to specify this decision rule to complete the
definition of «,[-].
8
Optimum Decision

Using the optimum decision criterion (counting bits) we choose m' such

that

1 ~ \ ~
v'(up PN ) < i y'(q,‘,‘;‘[mn]) (3-11)

m

Simwplified Rule

Proceeding as we did in Chapter I we can bound and approximate the
performance of each L?".17“‘(1\7“] by using (2-74) and (2-75), We have from (3-8)

for £=5 or o

m

y'(¢7 &))< YENED) _ v (T ¢ Nk (3-12)
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where Y (Ki‘“ is a bound on the performance of operator & _[-] applied to
{ p P ? PP
- ~nf
the m MSB's of M" and Nk is a count of all the k LSB's of input sequenrce M,

By the observations in (2-33) we also have typically
Y (¢’7“ [Ex"])z Yol (") (3-13)
We can now specify a simplified rule for detzrmining the clioice of m.

Choose m' such that

T <
Y;n(Mn) = min Y
m

1

1, 0N
7 (M) (3-14)

Letting v’ (m') denote the number of bits required to represent a decision

(i. e., Mm!') xe have
. ~ 1 ~n , m', ~n o
Y (¢8[1\1 ])5 V(M) = (m') + yo (M) (3-15)
and where typically
v'(«ps[m"]) = V(") (3-16)

Block Diagram, 4:8[ -]

A block diagram of operator L1‘18[-] using the simplified decision rule of
(3-14) is shown in Fig. 3-3,

.. .~
Block Size of M

We assumed that the length of sequence MY was large to obtain the statisti-

val performance results for individual split sample modes in Fig. 3-3. However,

t Note that the length of a fundamemal sequence generated by using mi MSB's can
be related to an I'S length generated using fewer MSB's by the sum of the addi-

tional split 1.SB's,
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there is no fundamental reason that N be large, In fact, the tradeoff is much
like that required in choosing a good Basic Compressor block size in ;
Chapter II. The smaller N is, the more rapidly operator 418[ -] can change to

accommodate variations in data statistics, At the same time per sample cost

in overhead to identify the selected split sample mode, ¥’(m'), increases.

For most typical applications the cheice of N is not critical and one simply

chooses N to be some convenient value which is large enough to make ¥ (m')

negligible., For .xample if there are four split-sample modes included as

options and the data character is slowly varying then a convenient block size

of N=64 (e.,g., four Basic Compressor blocks using J=16) only adds the
negligible overhead of 1/32 bits/sample, In these situations the average per
sample performance of operator «;:8[ -], using the optimum or simplified deci-
sion rule, will generally ride the lower envelope of the curves in Fig. 3-3
(where the computation of average performance and entropy is assumed to be
determined over some N' » N),

When the variation of data statistics is more rapid, the average per
sample performance of 418[ -] may be less than the average entropy. Ir special
cases it may be advantageous to choose N as small as the length of on= Basic
Compressor block J (e.g., 16). Thatis, the additional adaptivity may more
than compensate for the increase in overhead:f In fact additional simplifications

turn up once N is constrained to equal J.

¥ Note that it is a simple matter to investigate the effects of changing parameters
(N,J)using estimators YS(-), Y;(-), etc., Complete simulations are replaced

primarily by counting operations,
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Operator @gh ]. With N=J we are led to simplify ng[ -] to the following

SS % 414[K/In] if ss=0
bR (3-17)
ss* m' % ¢2[§1m'] * 1k' if ss=1

The binary term ss indicates whether the input data is to be split or not,
If ss=0 the vnmodified input data is coded di ctly using the Basic Compressor
operator 414[' ], whereas ss=1 designates a split with m' indicating what the
split is as for ‘P8[' . However, unlike 918[ -], the split ..ISB samples making up
I\Niml are coded using code operator ‘,’.;2[ »] = CFS[-} only, rather than the four
options of L!.a4[ -]. This eliminates the nced for the two ID bits associated with
¢4[-] . It also simplifies the decision rules since there is only one code option
for each split mode.

Based on observed performance using high entropy image data, 4;8[ «] and
\,‘ng'] perform essentiaily the same with N=J=16, This is because a y,[.] deci-
sion is almost always to use 4‘2("1 when entropies are high, A slight improve-
ment in average performance can be obtained by including vll ‘] = FS[-] as an
additional option when ss=1 in (3-17).

Further Simplification Notes

In some applications decision making can be further simiplified with little
loss in performance, For example, the correct split-sample modes can be
accurately predicted from the results of coding previous blocks in the applica-
tion described in Refs, 2 and 3, In other cases the computation associated with
determining fundamental sequence lengths for each M (adding the split MSB and

1.SB samples) canbe reduced. This result is obtained by noting that when
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entropies are high, a fundamental sequence length associated with the m MSB's
of a sequence will (typically) be roughly half that for the m+1 MSB's,

Moving the Preprocessing Operations

All the discussions thus far in this chapter have assumed that input data
has been previously preprocessed as described in Fig, 1-1, In some applica-
tions the split-sample operations can be performed before this preprocessing
with precisely the same average effects, An important example includes the
differencing of adjacent image samples as described in Refs, 2, 3 and 10,
Although the same performance can be expected, it is more difficult to provide
a parallel implementation of the code estimators when there are several split
sample modes,

EXAMPLE
The following example should help make the previous discussions secem

less abstract, Let

SN - YD g v o §0 _
M? = Y] %Yy % Y3 (3-18)

be an N =52 sample preprocessed input sequence partitioned into three (Basic

Compressor) blocks of Iy = 16, J, =16 and J,=20 samples respectively where

Y] =3,51,0,2,1,2,2,7,10,10,22,14,7,0, 14
~§ = 22,22,3,0,1,5,3,0,21,17,5,4,5,1,7,13
Yy = 11,2,5,7,2,1,17,3,6,6,2,1,1,5,6,6,6,22,16,0

(3-19)

o
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We assume that the data originates from a source with alphabet size q =32 so
that n=5 and we wish to code M" using operator «,’»8[ -], assuming two split-
sample modes with m=n=5 and m=4,

Simplified Decision

Referring to Fig. 3-3, we first need to determine which split-san.ple
mode to use by comparing the estimates y?, and y‘;.

m=5, Withm=5 we ndave from (3-12) Y?] (1\715) = ys(ﬁds) which by (2-74)
is simply the sum of the Basic Compressor estimates on each of the input

blocks, y4(§15). Performing the required computations using the methods of

Chapter II we get
5, cn
\/7(M ) = 73+ 82 +91 = 246 (3-20)

m=4, Representing the samples of IC/IS as five bit numbers and applying
split-sample operator SS4[ ] (described in (3-1)-(3-3)) we obtain, with an

obvious extension of notation

~1

Yl 1\*4‘; « 0, + 0y, L= ii « 1) *ié (3-21)
where
1\71‘11 =1,2,0,0,1,0,1,1,3,5,511,7,3,0,7
1\71‘;r = 11,11,1,0,0,2,1,0,10,8,2,2, 2,03, 6
M3 =5,1,2,3,1,0,8,1,3,3,1,0,0,2,3,3,3,11,8,0
(3-22)
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and the least significant bits are

I‘:}_ = 1’ 151’0;0’1-0’091:0’0)010’1'0’0
i; = 030:1’0’17 1,1’0}1’1’170’1’1’1’]
ﬁ; =1,0,1,1,0,1,1,1,0,0,0,1,1,1,0,0,0,0,0,0

Then

v(§%) = 55459 + 68 = 182

(3-23)

using Basic Compressor operator \,UZ[ *] = CFS[-]on each f\\'/I:1 Then by (3-12)

y‘;(faf’) = YS(I\“/L4) +52(1) = 234

(3-24)

Decision, The decision rule in Fig. 3-3 would lead us to select m=4

since Y‘.}](I’\V/IS) < Y?(IT/IS). Since there are only two possible split sample modes

we have from (3-~24) and (3-15)

!Z’(¢8[1\'715])s 235

Actual Coding

The actual coding of M™ takes the form

m!' % ¢;n‘[ﬁn]

iy

m' % ‘Ps[ﬁm'] *ik
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By previous results we have decided to use m'=4 which can be arbitrarily

represented with a binary 1. Then (3-26) can be expanded to
el - st 4 st ~4 ale ~4 e 4 1 2
¢8[M ] =14 LJ"4[“~\/[1]"' 4}4[1\/{2]': 4’4[M3] L (*'27)

Noting that the individual Basic Compressor decisions leading to YS(K/I4) were

L’JZ[‘] = CFS[ -] for each block 131?, (3-27) further breaks down to
b [M™] = sk oy ord B i Vi * % o w1 1
Wo[M™] = 1% 10 % o, [R1]] * 10 ¢2Dw2]. 10 # y,[M3]*T°  (3-28)
The reader may verify that.r

UZ[M‘I}] = 10111100111011110110110001000100

000100001011001100100 (3-29)
¢2[ﬁk§] = 00010000010011100110111011100010
0001001001001001101010100 (3-30)
¢2[ﬁ2§] = 01001011011001110000100101100011

1011111010110001101010001010011100

and that equality is obtained in (3-25)

.w(¢8[mn])= 235 (3-32)

1‘Note that successive use of operator xpg[ -] in (3-17) would require fewer bits

for this example,
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Observation, Note that the actual location of the 1LSB sequences 'Li{
need not be as prescribed in the development of ¢8[ -] For example, they
could all be located before the Basic Compressor blocks, or individually
after each Basic Compressor block they correspond to. Such variations tu
us{ -} have no effect on performance but may be a useful implementation

consideration,
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IV, EXTENDING EFFICIENT PERFORMANCE TO VERY LOW ENTROPIES
FOR NON-BINARY SOURCES
As noted from Fig, 2-5 if the variations in data entropy result in values

much below 1 bit/sample the efficiency of the Basic Compresscr operator
Yyl -] suffers, This chapter develops a code operator structure for extending
good performance over this lower range of H(P) when B of non-binary sources
are a priori unknown except for the usual preprocessing assumptions in
Chapter I (see Fig. 1-1), A basic requirement in the definition of this structure
is the existence of 4 separate code operator which is capable of providing effi-
cient coding of binary memoryless sources with a priori unknown (and varying)
probabilities, Since the latter subject is of general interest by itself it .. given
a separate treatment in Chapter V which provides the development of a class of
such binary code operators, Appropriate substitution of these results into the
operator structure of Chapter IV completes the definition of a class of non-
binary code operators which will maintain efficient performance when H(P) is
very low,

REWRITING THE ENTROPY EQUATION

Data Model

We can obtain motivation for developing an adaptive code uperat-r by first

investigating an idealized data model. Let
Z=z iz, 2 (4-1)

be a T sampl- sequence from a discrete memoryless source with known and
fixed probability distribution P with the usual symbols 0,1,2, *** g-1 and the
probability ordering of (1-8) (i, e., the idealized output of preproces~ing opera-

tions in Fig. 1-1).

-
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Relati nship with P

As in earlier chapters, P denotes a measured average distribution of
samples., If these samples are from the ideal memeoryless source with distri-
bution P then F will equal P if we make the measurement span long enough.

Spiit.dng the Source

When H(IND) =H(P) drops much below 1 bit/sample the sample distributions

start taking the form shown in Fig, 4-1.

PROBAJILITY, P

\ ~

~

f

~
S~
S
——
L I
1
3 4 5

SAMPLE * €S, i

0 1 2

Fig. 4-1. Sample Distributions When H(P) — 0
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The importunt characteristic to notice is that the probability spike at zero
seems out of place from the remainder of the distribution. The coding philosophy
we have followed so far suggests that it may be advantageous to treat these dis-
tinctly different parts of the distribation separately.

Indeed the source characterized by distributions in Fig. 4-1 can be viewed
as a mixture of two sources, one with the symbol zero and the other with the
remaining symbols 1, 2, -++ q-1. More simply we can get the desired motiva-

tion by manipulating the basic entropy equation in (1-9) rewritten here as

H(P) = -p, lo Bl lo (4-2)
Pg *082 Pp " (T N pj 1087 Py F e
i 0

After some manipulation this yields
H(P) = Hy(pg) + (1-pg) Hy (4-3)
where
Hﬁ (po) = "po 1082 PO - (1 'po) 10g2 (1 'po) (4-4)

and

p. . .
H, =Z(l_‘p0) log,, (TPZI?S) (4-5)

We recognize the first term, Hﬁ(pO) as the entropy of a binary memory-

less source with the probability of a zero equal to Py More specifically, let

D (4-6)

u0

e



SR,

T be the sample binary sequence which identifies whether a symbol of Zisa
zero or not, Then Hﬁ(po) can be viewed as the minimum average bits/sample
required to code D.

Since 1 = Spi/(l—po), H, is the entropy of a discrete memoryless source

)
with symbols i=1,2, +++ gq-1 and probabilities pi/(l-po). The latter terms are

simply the conditional probabilities
Pr(symbol = :]i#0] = p;/(1-py) (4-7)

of the original scurce and which, with the exception of the missing zero, also
satisfy (1-8) if the p; do. Then Hg can be viewed as the minimum average
tits/sample required to code all the non-zero samples of Z (where T large)
and (l-po) represents the fraction of all the original symbols which would
typically be included in this sequence,

T

More specifically let

(0%

(+-8)

be the sequence of all the non-zero samples of Z. Then Hg can be viewed as
the minimum average bits/sample required to code O and (l-po) represents the

fraction of all the samples of Z included in ©. That is
E{4(®} = (1-pyT (4-9)

Then by (4-3), the coding of long sequences from the original source close

~

to H(P) can be achieved by "splitting' the sequence into two new sequences D

T\Vc will later relabel the 0 symbols to 0,1,2, *++ g-2. This has no effect on o

the entropy arguments,

Ol



and ©, as described above and then coding each of the.n close to their
corresponding entropies HB(pO) and Hg.

The remainder of this chapter and Chapter V will seek to develop adaptive
code operators which take advantage of these concepts while recognizing that
real world problems are not qQuite o idealized, While the memoryless assump-
tion and prc’ab.lity ordering can usually be approximated well in practice the
real P is generally a priori unknown and varying. Measured distributions, P
and fio may even average out variations in data characteristics. In these practi-
cal situations, as in previous chapters, the entropy expressions in (4-3) - (4-5)
serve as practical guides to performance but may no longer be bounds,
OPERATOR SPLIT|-]

Using the above discussions as a guide we define the reversible SPLIT(-]

operator by
sPLIT[Z]= D =6 (4-10)

where Z is the T sample sequence in (4-1), DisaT sample binary sequcnce
"identifying' which samples of Z are noa-zero and, 9 isa sequence of all the

non-zero samples of Z reduced by l:f Specifically

D=dyjdy  rdp (4-11)

where

$01fz.=0
i
d, =

i (4-12)
( 1 otherwise

T This amounts to a relabeling of the original & in (4-9),
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and the

N = E d, (4-13)
i=1
samples of
8= 0, 6, 6, oy (4-14)

can be generated by testing successive samples of Z and creating new samples

of & from Z by the rule

Create next
If z; >0 sample of 8 (4-15)

6=2z. -1
J

Ohserve that by subtracting 1 we have essentially done the relabeling
described in Fig. 1-1. By (4-7) the relabeled © symbois 0,1,2, *** q-2
will satisfy the desired probability ordering in (1-8) if the input z, do.

Reconstructing Z from D and © is obtained simply by testing successive

samples of D and generating the corresponding samples of Z from © by the rule:

Ifd. =0 z. =0
i i
(4-16)
zi=9+1
Ifd, =1 where 6 is next

sample of &
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CODE OPERATOR

The SFPLIT([-] operator just defined ailows us to specify the general form

of a new code operator u()[ ] by

“olz]= ., 3[D] = 4[]

(4-17)

where ve[ -] means any code operator for coding the variable length O sequences

anddﬁé[ -] is any binary code operator for coding the D sequences. A block

diagram is shown in Fig, 4-2,

(bounds) for later use,

—_—] (] —f b (-]

Included arec the usual performance estimates

4 [B) *0,l8)

N

ESTIMATE

Yotd)

[ig, 4-2, Gencral Form, Operator ll‘()[-]

l') 4

i

Pro——
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As noted in earlier discussions, operator ¢9[-] will be an efficient
operator for Z sequences if L,’)fj [-] and k;fe[e] are efficient operators for D and
) sequences respectively, Since distributions of Z are in practice a priori
unknown and varying, so too are the corresponding distributions of samples of
D and®. For 419[-] to be an effective operator tbé['] and ~Pe[~] must be able to

adapt to variations in the statistical character of D and e.

Coding of ©, Y,l+]

Of course any algorithm for coding © could be substituted for t.j'Je[- ].
For our purposes we will assume an operator form utilizing the Basic Com-
pressor, such as ué[ *]in (2-70) or some equivalent variable length form of
“8[' Jor u‘;g[- ] utilizing split sample modes (see Fig, 3-3). The specific algorithm
details would of course depend on the particular application, However, based on
the results of previous chapters an appropriate choice of such operators should
provide a broad range of efficient performance as entropy HB in (4-5) varies.

Estimate of v’(d»e[é]). Since we havc specified that yi (-] be an operator

6

form utilizing the Basic Compressor, estimates of performance of the type in
(2-75) are easily obtained. Following earlier notation, we let ye(é) represent
this estimate,

Coding of I:‘, Qé[-]

Again, any algorithm for coding the binary D sequences could be substi-
tuted for @Jﬁ[-] in (4-17), We will provide an efficient class of such binary code
operators in Chapter V,

Estimate of ’/(yé[f)]) As we did for q)e[-], we let yé('f)) represent an

cstimate of ’/‘(«,‘;é[ﬁ]) of the form in (2-73), Then as in Fig, 4-2 we also have

the equivalent form for 99[ .

) ~ - ‘ oy s
Yo(Z) —Yﬁ(D) t Yg(O) (4-18)
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Operator 910

The design of operator qu[-] is motivated by the distinct spike at zero in
symbol probability distributions when H(P)—~0. However, by (4-3)
operator Qg[-] will be efficient for any H(P) provided both operators \bé[-] and

'C,Je[' Jare. Unfortunately requiring . ,[+] to be efficient at high entropies in addi-

9
tion to low entropies places unnecessary demands on the design of spé[-] . For
example, when H(P) is very low ﬁo——l whereas when H(P) becomes large and
the distributions flatten, '}30—’ 0., Thus L.',Jé[- ]is required to be efficient for
unknown and varying 50 in the range from 0 to 1. This additional requirement
can be avoided in most applicaticns by instead specifying another operator,
¢10[- ], which selects between ug[‘] and some operator which can efficiently
code Z at the higher entropies. Such operators were the subject of previous
chapters., The niost general form was ¢8[‘ ]in Fig. 3-3 for which special cases
include operator 4:5[-] or 444['] when there is no need for split-sample modes.
In this case the 4 or 5 replaces 8 in the following discussions,

It is a simple matter to define w, [+], following the same procedures as

10

in earlier Chapters
G IZI =X * G IZI 4-19\

where \ is the selected code operator number 8 or 9 (the concatenated X being
interpreted as a binary zero or one), It remains to specify the decision rule to
complete the definition of Lblo[- 1.

Optimum rule, Again the optimum rule is simply to count bits, choosing

A such that

v\ [2) = ir:;ng.w(qu[Z]) (4-20)
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However, use of the Basic Compressor estimates can result in
considerable simplification.

Simiplified rule. Instead choose \ such that

Y,(Z) = min Y (Z) (4-21)
A i=8,9

Noting that X requires one bit for ‘dentification we also have
v’(q,lo[z])s YiolZ) = 1+ Y\(Z) (4-22)

and where typically

.¢(¢10[Z]) = ¥;0(2) (4-23)

With @8['] available as an option which performs efficiently when H(P) is
high, a less sophisticated form of Upg[o] (which works well only at very low
entropies) can be assimed, In this case, the decision rules in (4-20) and
(4-21) would always choose A= 8 when H(P) was high,

Further simplifications, To further take advantage of the existence of

the option 4;8[- ], note that in general a © buffer equal in size to the length of z
is required, But this buffer will tend to fill up only when H(P) is high and
P, is low. But then 418['] is the code choice, Consequently the required

buffer size can be reduced, Let
Be (4-24)

be the length of this buffer and supplement the simplified decision rule by

adding

Set \ = 8 if £(8) 2 Be (4-25)
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to override the decision in (4-21). B0 can be experimentally chosen so that

with high probability there is negligible loss in performance,.

Block Diagram, 4}10[-]

A block diagram describing nplo[-] using 4-21 and 4-25 appears in
Fig, 4-3,
PERFORMANCE
Extensive tests of a sophisticated k,Ug['], using appropriate substitutions
foru,Ugi['] from Chapter V, indicate average performance which remained close
to H(I—D) for any H(—I3) in the range of 0 to 8 bits/sample, where P was a priori
unknown and not changing significantly over the measurement span., This is

shown in Fig. 4-4.

Average performance considerably under H(P) was observed in situations
where P changed significantly over the measurement span,
EXAMPLE

An example of the use of SPLIT[-]is given in Fig, 4-5 for a T =256 sam-
ple 7 sequence. Observe that the © that results is the same as M™ in the
example of (3-18) and (3-19). Thus the coding of § for operator kbg[‘] in (4-17)

has already been described as a special case of LPO[-] with

‘/'(qe[é]) = 235 (4-26)

This example will be continued in Chapter V after first developing appropriate

binary code operators for D (see 5-47).

T

Thesc tests were run on transforin coefficients of the RM2 image compressor

[5]

algorithm,
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AVERAGE PERFORMANCE, BITS/SAMPLE
=N
T

0 ] i 1 1 1 1 L
0 2 4 6 8

AVERAGE ENTRCPY, H(P), BITS/SAMPLE

Fig, 4-4. Measured Average Performance, 4:9[-]
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V. CODING FOR BINARY MEMORYL 35S SOURCES

WITH UNKNOWN STATISTICS

This chapter provides a class of efficient code operators for real binary
sources which can be realistically modeled as memoryless with a priori unknown
and varying probabilities.

Several of these binary operators, denoted 4:%[ ]and q..é'[ -] are intimate 'y
related to the non-binary operators, 4;9[- ] and 4;10[ -], developed in Chapter IV.

It will be advantageous for the reader to become familiar with the structure of

the latter operators before ::-oceeding into the details here.

PRACTICAL ASSUMPTIONS
Data Model

Let
D=d,d,...d (5-1)
be a T sample sequence where the di are the output of a binary memoryless
source with probability of a zero, Eg To reflect real world variations in Py

we will generally assume that the P for each D is a priori unknown and where

Py can lie in the range 0 < P, s 1,

Binary Entropy

From (4-4) the binary entropy function is given as
Hy(pg) = - pq log, py - (1 - py) log, (1 - py) (5-2)

and is shown in Fig. 5-1 for 0 « L 1.
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Quite unsurprisingly, Ilﬁ(po) is symmetrical about po = 1/2 where Hﬁ(po)
reaches its maximum value of 1. At this point zeroes and ones are totally random.

As noted from previous discussioas the interpretation of entropy in practi-
cal problems usually requires some caution. The usc of Hﬁ(o) cenerally requires
the nreasurement of an average probability, p'o, determined over a span of
samples which may be much larger than the length of D. When the real Py is
slowly varying over this measurement span then average code perfor.nance .bove
but close to I{ﬁ(po) can be viewed as "'efficient. " Hp(po) acts as an approximate
bound in this case becausc the data behaves like an ideal memoryless source.
However, if data statistics are significantly changing over the me:surement span,
Py will averape out the changes. Sincc Hp(p'o) cannot account for the possibility
of adapting a coder to these variations, average performance below Hﬁ(p’o) may
be possible.

The remainder of this chapter will seek to develop Linary code operators

which exhibit efficient performance characteristics in the sense described above.

PREPROCESSING OF D

The samples of D are not in a form suifable for a direct application of pre-
viously developed code operators. This section will provide the necessary pre-
proccssing of D. In so doing we will restrict the choice of various parameters
to simplify discussion and potential practical imrlementations. However, it is
felt .hat the chosen parameters are a good choice from a performance standpoint

also, More general investigations are left for further study.

eth Extension

We firsl restrict the length of D to be multiple of e so th-t
#D)=T=re (5-3)
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Using operator Extcl'] from (2-v) yields che et ' extension of D

D' = Ext'[D] - d di, ... d! (5-4)

where the T samples of D' take on the values 0, 1, 2. ... 2.1 determined by the
corresponding binary e-tuples of D. That is, the standard binary representation
of d!l is simply the ith consecutive c-tuple of D. We will principally rely on the
context of a discussion to identify whether a di refers to its non-binary value or

its binary representation.

e-tuple Probability. If the binary digits reprcsenting any di are the result

of a binary memoryless source then the probability that these digits will form a

particular e-tunle with j ones is easily given as

"Any e-tuple with] ooi i
Tr _ J= pp J(1 - pyY (5-5)
L j ones

where Py is the usi.al probability that an individual binary digit will be zero.

There are

{ ey
= 5-6
\ ) jrle-jyt { )
such e-tuples. Then, provided P, > 1/2 we must have
Any e-tuple with Any e-tuple with
Pr 2 Pr (5-7)
j ones i'> j ones

Conversely, if Py < 1/2 the inequality sign in (5-7) reverses,
Thus while D' 's a sequence of (approximately) independent samnples taking
on the values 0, 1, 2, ... Ze-l these values do not occur with the desired proo-

ability ordering of (1-8). For example, by the above arguments
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1000 ... 0100 oo ., ., 01

-

e-tuple [ c-tuple
Prrd!=4]:Pr \Pr[df=3]=Pr[
[ Y 1 ]

(5-8)

where P, > 1/2. Thus D' must be preprocecsed further before the results of

earlier chapters can be used.

Ordering Probabilities

We propose two reversible maeppings of d; samples given by {0[- } and

fll‘ ]. The functional specification of these mappings can be described by the

following:

L
t

MCH (5-9)

and

Ac = 0 [di] (5-10)

’

0
where Ai and A.ll take on the values 0, 1, 2, ... 2°-1 (non-binary interpretation)

and where

Prlab= 0] z Pr[ab = 1] = ... = Pr[ab = 2°.) (5-11)

is satisfied for { = 0 when P - 1/2.3iad for { =1 when P, * 1/2 (provided the
binary memoryless source model holds for the digits of D).
Extending our notation slightly, thc application of fé[- ] to all the v samples

of D' in (5-4) yiclds the sequence 5; wgiven by

‘Sg = Iy [D] = f(_‘ [d'l] f{[d‘z]'! /‘z_.‘[dir]

- K.; 4 t:-; -
—Al AZ.--AT (5-12)
where { = 0 or 1.
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Then by the above assumptions for the f;,[ -], eit ¢ :'5.0 or 51 should meet
the desired requirements for a preprocessed data sequence in Fig. 1-1 when
0<py =t Further, since the operations of Ext®[-] and fg['] are reversible
the per sample entropy of 5@ should be increased (by a factor of e) into the
efficient operating range of the Basic Compressor. The results of preceding
chapters should be directly applicable. A block diagram summarizing the dis-

cussion and notation thus far is given in Fig. 5-2.

Derivation and Implementation of .f,[- |

6
From (5-7) we see that to obtain the ordering in (5-11) for Py 2 1/2,f0[~]

need assign the number zevro to the all zero e-tuple, the consecutive numbers 1

1 2

e-tuples with two ones and so on. Without any additional constraints the partic-

to (T) to e-taples with a single one, the numbers (?) + 1 up to (e) + (e) to

uiar assignment of numbers to e-tuples with the same number of ones is
arbitrary.

An f1[°l mapping which results in the desired ordering in (5-11) when
Pg < 1/2 can be described in exactly the same way by reversing the roles of

zeroes and ones. We wiil investigate this further.

Joint Implementation of fol -] and ,flu. Let 1 be any binary e-tuple and

p its bit by bit complement. We note that if v is one of the (;) possible e-tuples
with j ones then ¥ is one of the ( e.) = (;) possible e-tuples with j zeroes. We
can then implement f0[°] and fll'] as a table lookup by arranging all possible

e-tuples so that e-tuples with fewer ones appear at a higher position (closer to

the top) and that if v is in position k-1 from the top (counting zero), i appears

in position k-1 from the bottom. Then folv] is the position of v from the bottom.

1his is shewn in Table 5-1.
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Table 5-1. Arrangement of fr[-]ior Table Lookup

Position from Top fo[-l Input ¢-tuple Position from Bottom fl[~]
0 all zeroes 2
| 00....001 R
2 00....010 20 .3
1 » []
: H '
k-1 v (has j ones) 2“ k
P i f ;
¢ - .
2 -k v (has j zerocs) k -1
: ; E 5
+
2 .1 all ones 0
Then
(7] = v
f7) = f )
and similarl 5-13)
Yy

£ol?1 = flv]

This means that ;fllv] can be obtained by first complementing an input e-tuple
and using fol-] as shown in Fig. 5-3. However, if both fol r] and fl[v] are
simultaneously desired, this approach requires two table lookups. This can be
avoided.

Simply note that while fO[V} is the position of from the top of the table,

fl[ul is the position from the bottom so that

flvl = 2%-1 - Folvl (5-14)
But (5-14) is the same as
filvl = Folvl (5-15)
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Fig. 5-3. Implementing j-'o['] and _-Fll'], Method 1
where
Folv) = COMP[,v]]

is the bit by bit complement or folv] interpreted as a binary e-tuple. Thus

fl [-] and fo[-] can be implemented as a single table lookup as shown in Fig. 5-4.

INPUT
o-TUPLE fo[”)
fo[] —i

come( - ] filv]
(2-9)

Fig. 5-4. Simplified Implementation of fol-] and f1[-]
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ol and fl[-] fore =4

We will henceforth restrict the parameter e to be four. This choice has
some practical advantages with no obvious disadvantages s far as coding per-
formance is concerned. Quite without surprise, we will seek to make use of the
code operators developed in previous chapters. If we restrict e to be 4, the
preprocessed samples of Z.g in (5-12) will have entropies in the range of 9 to 4
bits/sample, quite suitable for a direct application of the Basic Compressor
operator developed in Chapter II. Higher entropies might necessitate split-
sample modes as described in Chapter III. This would be an unnecessary com-
plication for this application.

A complete table defining both ;FO[.] and fll-] for e = 4 appears in

Table 5-2.

GENERAL CODE OPERATOR STRUCTURE

Since by (5-11) and the preceding developments, A_ and 51 satisfy the

0
desired requirements for preprocessed data sequences (Fig., 1-1) the results of
previous chapters should be directly applicanvle. The most obvious example is
to use the Basic Compressor operator, L’J4[ -], to code D by treating 50 and 51

as single J = T/4 sample Basic Compressor blocks or to partition 50 and 51 into
several smaller blocks and then apply qJS[ ] from (2—71).1‘ More generally, any
operator, say q;o[-], can be used to code 50 and 51 in th2 same manner. To this

end we define

1-No'ce that when using ygl-] there is_some obvious pract1ca1 advantage to restrict-
ing the length of the 4; (and hence D) to be a multiple of some convenient Basic

Compressor block s1ze J (e.g., 16). Then from (5-3) we have
,'/’(Si) =T =T 5-16)
and
(D) = 4+'7 (5-17)
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Table 5-2. f (-] and f)[-] for e = 4

Input 4-Tuple fo[v] fllv]
v

Non As Non As Non As

Binary 4-Tuple Binary 4-Tuple Binary 4-Tuple
0 0000 0 0000 15 1111
1 0001 1 0001 14 1110
2 oo1lo0 Z 0010 13 1101
4 0100 3 0011 12 1100
8 1000 4 0100 11 1011
3 0011 5 0101 10 1010
I 0110 6 0110 9 1001
5 0101 7 0111 8 1000
10 1010 8 1000 7 0111
9 1001 9 1001 6 0110
12 1100 10 1010 5 0101
7 0111 11 1011 4 0100
11 1011 12 1100 3 0011
13 1101 13 1101 2 0010
14 1110 14 1110 1 0001
15 1111 15 1111 0 0000
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] (5-18)

j D] = ¢ .0 X
WAIB) = L&,

where { identifies the selected choice of preprocessed sequence 50 or 51 (the
concatenated { being interpreted as a binary zero or one) and j is a priori fixed

(e.g., 4 or 5).

Decision Rules

Optimum. By counting bits ¢ is chosen such that

24 (Eg)) = min L4IE)) (5-19)

b

Simplified rule. By using the Basic Compressor performance estimates

(bounds), ¢ is chosen such that

v.{48,) = min vy, (A,) (5-20)
T 0, T

Since { requires one bit for specification we have the bound and estimate for

Lpé [D] given by

j ™ < j DY = A -
Q(‘JJp[D])—Yﬁ(D)— 1+ Yj(Ag) (5-21)

Majority rule. In scme applications it may be acceptable to simply choose

{ by tae majority rule

T
- §: T
0 ir di<'—2~

i=1

§ = (5-22)

“1 otherwise
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The applicability of this rule is most suitable when Py 1s slowly varying
and the length of D is large or when an operator is expected to ope ‘ate only for
very low or very high values of p,-

Ncte that (5-21) is still a useful estimate when (5-22) is used instead of (5-20).

Block Diagram

A block diagram describing ¢é[ -]is shown ia Fig. 5-5 as;uming the simpli-

fied rule in (5-20).

Restricted Range of Poa_}"é[_'_].

in some applications the range of Py may be limited to either 0 < Py = 1/2
or 1/2 < Pg = 1. Quite obviously under these conditions, there is no need to

choose betweean 50 or A

the ¢ identifier in (5-18). It is useful to define two simplified operators which

1 for coding purposes, and correspondingly no need for

fit these Conditions. Define ch'l[ . ] for é =0 and 1 by
ﬁj D . A 5"23

where we a priori choose §{ = 0 if Py 2 1/2 and { =1, otherwise. The block dia-

gram for wé[ -lin Fig. 5-5 reduces to that shown in Fig. 5-6.

THE BASIC BINARY OPERATORS

A direct application of the I~3ic Compressor to the codine of the 5,; in
Figs. 5-5 and 5-6 yields ''the Basic Binary perators' tbg[- ], tbg[-] and Lpg,[- 1,
LJJ;53'[ ‘]. We will investigate these operators further in this section. Before pro-
ceeding, note that ¢‘é[-] is really a special case of Lpg[-] in which only one Basic
Compressor block is used. Sirailarly, the ij,[-] are really simpler versions
of nbg['] designed to work over half the range of Py Thus we can concentrate on

418[‘] without loss in generality.
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Implementation of Simplified Rule

Observe frcm the developments in Chapter II that an essential element in
the generation of Basic Compressor estimates y4(-) or ys(-) is the computation
of "fundamental sequence length" F. By (2-4), this amounts to adding the samples
making up a J-Sample Basic Compressor block. The test in (5-20) and Fig. 5-5

suggests that these same computations are required for each block making up

-
PR

both AO and 51" However, the structure of I'ables 5-1 and 5-2 ca be used to

avoid a requirement 1o add the sampvles of 51. The results provide an additional

Ll

practical argument for the use of a block ze of J = 16.

[
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Assuming the same partitioning of 50 and 51 into

Two's Complement.

J = 16 Sample Basic Compressor blocks let

=i i i i -
X = X x2 vee X0 (5-24)
be any such block from Zi wich FS length given by (2-4) as
16
i i

F' =16 + z % (5-25)

k=1
where i - 1, 1.
By ’'5-14) we have
x11< =15 - x0 (5-26)
We can then write F~ as

16

Fl =16+ E (15 - x0)
k=1

(5-27)

=16 + {256 - Fo}

or more simply
(5-28)

Fl = 16 + Two's Complement [FO]

Expected Performance
Under the rather ideal assumption that all the T samples of D are the

result of a binary memoryless source with a priori unknown but constant Py




the expected performance of 41‘43[-] and ubg[-] can be bounded. The results of

Appendix A provide a result of the formf

* E{y’(q.g [D])} <A (g, T) bits/sample (5-29)

for j = 4 and 5, andOsposl.

A plot of A%(po, 256) is given in Fig. 5-7.

Observe from Eq. A-2 that because Pp is assumed constant over the length

of D additional Basic Compressor blocks of 413['] actually degrade performance
by increasing the overhead. In this situation there is no advantage to adapting
since the data characterization is the same for all of D. However, in many
practical problems Py will change over the length of D and the added flexibility
to change code options may more than make up for the additional overhead.
Average performance under HB(;‘)O), where f)o is the usual measured averagc of

Py’ is a typical result.

Performance of %['] . With no elaboration necessary, we have

1 j < A .1 -
+ efewd o0} Ay, T - & (5-30)

for j = 4 or 5, provided Py is limited to either Py 2 1/2 or Py = 1/2.

5
E W2l
xample of 'ﬂ[ ]

Let D be the T = 256 sample binary sequence of Fig. 4-5. Following

Fig. 5-5 we obtain D' 25

1;We have taken the liberty to leave out thesadditional parameter of 1 for the

number of Basic Compressor blocks in ¢p[-].
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[DB} = (0, 0, 0, 0,0 0, 0 0, 0 0 0 0 0, 0, 0, 0)
0,8 7,1,8,1,6,4,1,0, 0 0 0, 0, 0, 0)*
(0, 0, 0,0, 8 3,14, 8,0, 5, 12, 4, 4, 6, 1, 4)*
0, 3,1, 3,5 5, 14,7, 2, 0, 0, 11, 12, 14, 0, 0)

(5-31)

where we have conveniently split D' into four 16 .sample blocks. Now applying
fo[-] of Table 5-2 to each sample of D' yieldﬁ"
A,=(0, 0,0 0,00, oqd;o,o,o,o,o,o,o,ow

(0, 4, 11, 1, 4, 116’/’ 3, 1,0, 0, 0, 0, ot 0, 0)*

(0, 0, 0,0, 4, 5 14, 4, 0, 7, 10, 3, 3, 6, 1, 3)*

(0, 5 1, 5, 7, 7, 14, 11, 2, 0, O, 12, 10, 14, 0, 0) (5-32) n
Applying fz['] to obtain 51 can be done in several ways. The simplest is to use
Table 5-2 again, yielding

Zl = (15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15)%

(15, 11, 4, 14, 11, 14, 9, 12, 14, 15, 15, 15, 15, 15, 15, 15)%
(15, 15, 15, 15, 11, 10, 1, 11, 15, 8, 5, 12, 12, 9, 14, 12)*

(15, 10, 14, 10, 8, 8, 1, 4, 13, 15, 15, 3, 5, 1, 15, 15) (5-33)

We could also obtain 51 by using (5-13) and (5-15). For example, take sample

19 of D'. Its non-binary form is seven = 0111 =v, Complementing each bit we
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1000 = eight. Then using Table 5-2 for fo(\") we get

S~
—
4 4
—
u

0100 = four - fl('?).
Following the procedure in (5-15) we first obtain fo(T) = eleven = 1011.

Complementing each bit we obtain .[0(7) = 0100 = four. The same result.

Code Estimates. 50 and 51 have alrea.iy been partitioned into 16 sample

blocks to accommodate application of the Basic Compressor in the form of wsl’]

in (2-69). To facilitate notation, let
~ =~ 03 (2153 3 _
A, =4, (1)73,(2)73,(3) 3, (3 (5-34)

where the .Si(g’) corresponds to the partitioned blocks in (5-32) and (5-33) and

let

i

FF (5-35)

be the fundamental sequence length corresponding to ‘&i(“' Then we have by

(2-74) and (2-28)

4 4
VsE) = D vy @0 =84 ) v (FD (5-36)
(=1 (=1

Making use of the procedures developed in Chapter II for Basic Compressor

estimates leads to the results for 450 shown in Table 5-3,

~

Table 5-3, Estimates for Ao

Fy 16 47 76 104

ID 0 1 2 3

Yo 6 47 58 64
91
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Using Table 5-3, YS(EO) becomes
v5(3,) = 183 (5-37)
Making use of (5-27) or (5-28) we see that
Y5(8,) << V5(a;) (5-38)
so that the simplified decision rule of (5-20) provides the choice of
=0 (5-39)

(the optimum rule of (5-19) also yields this decision).

Then by (5-21) we have
5 -
#(vplD]) = 184 (5-40)

Codingao_. Making use of the Basic Compressor code decisions in

Table 5-3 the coding of D using ¢g[-1 takes the form
YpIDI = 0:00% ggIB (110154 (Bo(2)1510%y g (311 uglE (4] (5-41)

The resulting coded Basic Compressor blocks are shown in Table 5-4, From the
table we note that .T(¢2[50(3)]) = 56 bits, two less than the estimate shown in

Table 5-3. Thus
5 ~ .
.S/’(pr[D]) = 182 bits (5-42)

Entropy. From D we obtain the relative frequency of zeroes in D as
Zntropy

_ _ 20
Pg =25

[ -N

=0.797 (5-43)
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Then using the binary entropy function in (5-2)

Hﬁ(fao) = 0, 728 bits/sample (5-44)
By contrast
1 5. _ 182 _ .
T-@(VB(D” = 58¢ = 0. 711 bits/sample (5-45)

Optimum decision. It is worth noting that if we had actually used the opti-

mum Basic Compressor decision rule (counting b’ts) code operator ¢2[-] instead
of ¢1[-] would have been chosen for block two, 50(2), resulting in a reduction
of coding bits by 3. Note however that the advantage obtained by use of the

optimum rule is (by observation) typically much less than this.

Coding of Z. Observe that the coding of D in this example completes the

coding example for non-binary sources initiated in Fig. 4-5. From (4-26) we

have
ft’we[é]i = 235 (5-46)
and using (5-42) we get
g(q,g[zl) = 182 + 235 = 417 bits (5-47)
for an average of 1.63 bits/sample.

BINARY OPERATORS FOR VERY LOW ENTROPY
Using the ideal memoryless model with constant Py a8 2 practical guide,
note that the average performance of ¢g[-] or ¢g[-] in Fig, 5-7 remains within

about 0.1 bits/sample of the entropy Hp(po) for 0 < Py = 1. At Pg = 0 and
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Py = I the performance '"bottoms out'' at 0. 095 bits/sample for the example
shown. As eatropy decreases from a maximum of 1.0, this (approximately)
0.1 bits/sample difference represents an increasing fraction of HB(pO)' In this
section, we seek to improve the efficieancy at these low entropy values.

A closer look at the distribution of the non-binary Eg samples as Py — 1
(see 5-5) reveals the same situation characterized by Fig. 4-i: a spike at zero,
dominating the distribution. This clearly suggests that the approach taken in
Chapter IV should be directly applicable to the coding of the [\Q and hence binary
sequence D. This is precisely the approach>we will take. It is suggested that
the reader review the operator structure developed in Chapter IV before

proceeding.,

Introduction to Operators 4»2['] and 412,[']

A direct substitution of operator \pg[-] from 1'ig. 4-2 into the block diagrams
for \P%[-] and \pg,[-] in Figs, 5-5 and 5-6 respectively, provides the twc new oper-
ators shown in Figs, 5-8 and 5-9, A more elaborate expansion of 4,9[-] is pro-
vided in Fig. 5-8 for discussion purposes. At the same time, we have taken the
liberty to expand the notation in an obvious way,

Recall that any operator indicated by the notation up:[-] is not completely
specified without reference to a '"parameter string'' which identifies its internal
parameters such as input block Jengths, decision rules, internal code operators,

etc. The 412[-] really identify a code operator structure,

With this in mind we can make some observations about QJg['] and 412,[-].

Operator form, From Figs. 5-8 and 5-9 we have

W3IB] = Lyl IB 1448y (£-48)
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and
¢Z, [D] = 4:23,[1”),:] “}glOy] (5-49)

where we note that 4‘%[ ‘land lIJg,[-] differ only in the fact that { is chosen during

operation by LIJg[- ] whereas it is preselected for LP%'{'].

Block Lengths. With T = 2(D) we have, by (5-3) and (5-4)

‘T(AL) =1=T/4= Q(ﬁg)

Requirements for 4»'9[_‘_]_. Since the samples of 5{_, and hence ég are 4-bit

numb :vs there is no need for split-sample modes by operator $g[-]. wgl-] can
be replaced by a variable length version of the Basic Compressor, 446[-] in

(2-70).

Qgerator upé[__]_ Now consider the block labeled q,aé[ +] within ¢9[ +]in
Fig. 5-8. Just as in the original definition of 4:9[ ‘1, upg[ .} can in general be any
binary operator (structure) for coding the T/4 sample sequence f)g, including
npg[-] or ¢g,[-] which we are currently discussing. Thus the block diagrams in
Figs. 5-8 and 5-9 actually describe an infinite class of possible operators (e. g.,
the parameter string for any ‘*"9[ .] could specify 4:%[ -] as its internal binary
operator Lpg[- ], which leads to another 419[ .] and so on). The usual theoretical
concerns for such infinite classes is not our main coacern in this paper since

our interest here is to provide code operators for practical use, However we

will return to the possibility of expanding up%[ . ]in this manner later.
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Expected Performance for l,uf?_[ ‘] and ¢g,u

From (5-48) and Fig. 5-8, the per sample performance of np%[ ‘] can be
written as
~ J ~

1,9 1 .
T+ 25D} = % + min 7 ~ + — (5-50)
T <'¥8 T 4 2(By) 2By

where Q(f)g) = T/4. Then under the assumption that all the T samples of D are
the result of a binary memoryless source with a priori unknown but constant Py

(over f)), the expected performance can be bounded by

A E{Q(¢g[bl)} < AZ('po, T) - 2+l {Ae(a, ZT‘) +A?3(b, 2'13)} (5-51)

where
T 4 ~
Aol F)2 & B{ew, e} (5-52)
i, T\, 4 i1 .

i )4 feding) o

and
a = max (po, 1 - po) (5-54)

and
b=at (5-55)

Similarly, we note thai without the need to identify {

. E{Q(\bg‘:f)l)} =A3.(py T)= 1Py 3% (5-56)
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The term Agin (5-52) bounds the expected bits *_ r 5(’ sample) to code
the variable length sequence ég. The detail.; are provided in Appendix B assum-
ing that gl S ¢6[-] and that ég is treated as a single Basic Compressor block.
The expression A% in (5-53) bounds the expectec performance of a binary
operator 4%[ -Jon T/4 sample sequerce ﬁg with a priori unknown but constant prob-
ability of a zero given by b in (5-55). Thus a complete determination of expected
performance for tbg[ ] requires that internal binary operator ¢g[ -] be specified.
In general, \'ap'[ -] could again be any binary operator, including the one we are

currently investigating, tng[- l. For example, if we let the internal binary operator

of LPZ['] be lbg[ -1, the bound in (5-51) could be expanded to

where
mae F)= T+ 3 hel )4l (o ) (5-57
and by (5-54) and (5-55)
al = max(b, 1 - b) (5-58)
and
b= ar? (5-59)

Clearly the expected performance of a large class of binary operators can

be derived by appropriate substitution of parameters,
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Example. An in.eresting example is provided by using the basic binary
operators \p‘é[-] or xpg[- lin the internal structure of 4%[ -]. The expected per-
formance of these operators was investigated earlier and displayed graphically
in Fig. 5-7. Using «pg[-] as the internal binary operator of ¢g[ -] yields the
resulis shown in Fig. 5-10 assuming an input block length of T = 256. The graph
was obtained by replacing the last term in (5-51) by A;(b, 64). The correspond-

4 ~
ing results for Lpp[ ‘] directly operating on D are repeated for comparison

purposes.

Introduction to Operators 41‘130[-] and xpi?[-_]

By Fig. 5-10 q;s[.] operating onEg performs better than q;vl-] for a range
of intermediate values or Py- Following our usual procedure for such situations
we can simply choose between these operators. This amounts to replacing t;:j[-]

internal to \pé[-] (Fig. 5-5) andwg,[-] (Fig. 5-6) by 4:10[". The resulting block
10
B

diagrams of binary operators {_ [-]and q;;?[-] are shown in Figs., 5-11 and 5-12.

Operator form. From the figures we have

vy D] - SN (5-60)

and

10/ = ~
Vg [D] = xl*xpxllagl (5-61)

where , is either 9 or 51 Again the only difference between upéo[-] and wé?[v]

is that § is chosen during operation by 41}30[-] whereas it must be a priori selected

for \J;:a?[ 1

T¢5[ ] or_Yyl+] replaces the ygl+iassumed in Fig. 4-3 here since the alphabet
size of Ayis only 16 so that no split-sample modes are needed. Recall that
these operators are really special cases of 4:8[-].
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\gtpg. 256) /V \4 2 g(po. 256)
(DASHED) N

/ N

0.8 \
- BINARY ENTKOPY FUNCTION

/ h Hglpo) \ \

4
v/
0.6 [

/

/// *INTERNAL BINARY

OPERATOR OF v3 (- ]

0.4 ,// . ,1,143[]
/
7
j/

0.095

EXPECTED PERFORAANCE, BITS/SAMPLE

0,044

0.0
0.0 0.2 0.4 0.6 0.8 1.0

PROBABILITY OF ZERO, Py

Fig., 5-10. Bounds to Expected Performance of «pg[-] on Ideal Memoryless

Source, Unknown but Constant P
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is described in (5-19) - (5-22). The simplified rule of (5-20) is preferred in

(-]

Decision rules for {. A selection of decision rules for choosing { in ¢

this case, and can be further simplified.

A direct application of (5-20) would require that { be chosen such that

YlO(Ag) = min Ylo(Ai) (5-62)
1=0,1

But by considerations of expected performance of q;é[-] and n.pg[-] just investi-

gated and practical observation, whenever the internal decision rule of 4110[-]

would choose operator 4:9['] instead of ¢5[- } we would also find that

where { = COMP[f]. Thus there is no need to consider w9[-] in the determina-
tion of {. The decision rule in (5-62) reduces to choosing { such that
ve(d,) = min vy (&.) (5-64)
> heg,1 0 E

Internal decision rules. As in Chapter IV the decision rules for selecting

either ¢5[-] or 419['] may be simplified in some applications to reduce the
required buffer size for é; samples. Following (4-24) and (4-25) the rule for

choosing )\1 is:

Choose A\, = 5 if .w(éé) 2 By
¢
Otherwise choose )‘1 such that
vy, (&,) =min y (4,) (5-65)
MY a5, 1S

where 8, buffer size B, can be experimentally chosen so that the loss in per-

4 ¢

formance is acceptable. Basically, this rule forces a decision to use 4:2[- ] at
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intermediate values of Pg- By Fig. 5-10 ¢J5[‘] is either the best choice or a
good second best for a wide range of Po-

Choosing Be quite small m.eans the L;;g[-] is used only to improve
performance for very high or low values of Pg- Under these conditions an addi-
tional simplification results because the internal L,bg[-] will never be chosen
unless pz > 1/2. Thus 4:3[-] can be replaced by xpg,[' ]. The particular options
chosen for implementation will depend on the particular application which may

not have such ideal stationary statistics.

Expected Performance. A bound to the expected performance of operators

44130[-] and q;l?[- ], assuaming D arises from an ideal binary memoryless source

P

with unknown but constant Pgs is easily obtained from previous results. We have

t e B} a0y, (5-66)
where

10 _2 o fad 9 -
A (pg, T) = %+ min{AS,(p,, T), AJ(p,. T)| (5-67)

and as usual
0 if P 21,2
L = (5-68)

1 otherwise

Again we have assumed that \pg,[ -] incorporates a single Basic Compressor
block making it equivalent to q;é,[- l. A graph of Alﬁo(po, 256) would essentially
be the lower envelope of the curves in Fig, 5-10 provided ¢9[-] is terminated

after one SPLIT (] operation and the &, buffer is not restricted.

g
Similarly, without the need to identify { Aé?(po, T) is given by

Aé?(po. T) = Aéo(po, T) - % (5-69)
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Multi-Level'\pgo[. ] and ¢197.]

P

As noted earlier any operator structure which includes ¢9[-] in its defini-
tion really defines an infinite class of operators. This is because the SPLIT( ]

operation results in a new internal binary source which must be coded by some
binary operator 4)'23[ -]. Since upé[ -] may again contain the SPLIT[:] operation
the procedure can be repeated ove:r and over again. But the number of binary
samples decreases by four at each branch into this '"tree of code operators, "
Thus the incremental impact on computation required for de-~ision making at
each step diminishes rapidly.

We provide an illustration of the procedures by expanding 4;1‘30[ -] several
times yielding an operator which would code a T = 1024 bit all zero or all ones
sequence with only 11 bits. A block diagram is provided in Fig. 5-13 where we
have taken the liberty io expand notation in an obvious way, Additionally, we
have also elected to accept some sliight loss in performance for this example by
choosing internal binary operators u.pﬁ. [-]and \pp,[ ] in the expansion instead

of xpﬁ [-] and 41‘3[-]. By earlier discussions (see 5-65) the é{, and éé 0 buffers

in Fig. 5-13 can be substantially reduced.

10{.1. The creation of multilevel operators such as 44:50[ +]in

P
Fig. 5-13is accomplished by continually replacing tte binary operator \pé[ ] which

Expansion of U

follows a SPLIT|[:] by another which also includes a SPLIT([*]. For the example

in Fig. 5-13, we have
4 IB] = pan gy [B)] (5-70)
p e W2
where )‘1 equals 5 or 9 just as in Fig. 5-11. If 7\1 = 9 we would have

10(=
4g [D] = gxx *¢p.lD ]*4:9[6;] (5-71)
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since we have used \plﬁ?[ -] as the internal binary operator of 419[ -1

Expanding 4»:39[ -] we have
ol B,] = \we (D] (5-72)
piog T 2T
where again A, equals 50or 9. If Ay =9

¢‘13?I15§] = Kz*wg,lﬁg, o*4gl8, o] (5-73)

since we have terminated expansion by using 4}2,[-] as the binary operator for

]3,; 0 (i. e., qu,[-] contains no SPLIT(-] operation).f
If the code decisions are actually )\1 =\, = 5 (very low or high po) the

final expanded form of 4::30[1’)] is given as
by [B] = n en g 1B, (Tryls, ey l8,] (5-74)
B 172" Py, 019!V, 07 Ve O

Al1L zero input sequence. If we take the length of D as T = 1024 and

assume it is either all zeroes or all ones, 4;}30[13] will take the form in (5-74)
with both que[eg’ 0] and q;e[t);] contributing zero bits. Since Ag, 0,0 reduces to a
{6 sample all zeroes sequence, q:é,[f)g 0] will require only 8 bits, Adding in the

3 bits for ¢, A, and A, we have

10

8 [D = all zeroes or all ones]) = 11 bits (5-75)

Z(y

or approximately 0,01 bits/sample.

*Note that using q;lpol-] instead would change (5-73) to the form

1018 1 . 5 7 = _
dg (B = "2*(’1“‘4‘;5'“3;.gll*q’e[eg.gl] (5-76)
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Additional Adaptivity

In many real problems po may not only vary but the manner in which it
changes may also vary. Whereas the algorithms described in this chapter will
typically perform well under a measured Hﬁ(ﬁo) in these situations, in many
cases, it may be desirable to provide additional adaptivity. Such desirable

modifications and extensions of the preceding developments will be the subject of

future reports.
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APPENDIX A
STATISTICAL PERFORMANCE BOUNDS

FOR ufé[ .1 AND wg[-l

Here we develop bounds on the expected performance of binary operators
Lpg[ -] and 4’2['] on T sample binary sequences D (5-1) under the assumption that
the samples of D are the result of an ideal binary memoryless source with a

priori unknown but constant probability of a zero, Pg> where 0 = Py = 1.

Specifically, we develop the result

%E{Q(t#é[f)])}sAg(po, T, 1) bits/sample (A-1)

where n refers to the number of Basic Compressor blocks used _y \pj[-] to code

Zgin Fig. 5-5, A) is given by

p
j (1 +2n .1 =L
AL pg, T,om) = B 4 Ly (FY) (A-2)
where
B - %—[p‘z + 14p(1 - py) + 51p7(1 - py)°
/
i 3 4 .2
// + 54p§(1 - pg) + 16(1 - pg) ] (A-3)
is a fuud 1mental/equence length for a J = T/4 Basic Compressor block and
/ 1
/ 0 if Po27
/ = (A-4)

1 otherwise

Yo 18 evaluated using (2-27).
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DERIVATION OF Ag

First observe that operator ¢4[ -] is a special case of operator 445[ -] for
which only one Basic Compressor block is used (n = 1). Thus, we can henceforth

assume j = 5.

As in (2-67) and (2-68), Bg can be partitioned into n Basic Compressor

blocks so .hat

Zgz 541)*5,3(2)* ng(q) (A-5)

and where the ag(k) consist of Ji samples satisfying

T

Now tracing through the appropriate equations, by (5-21)
B¢ ~
[y ~ D < -
LWglD) = 1+ v5[3,] (A-7)

Denoting the fundamental sequence length for &é(e) by F% ard using (2-29) and

2-74) we have

1
1 P TE } 1 +2 1 { 4 } .
5 E{zwgbl) s U2 13wy (5] (A-8)
£=1
where the first term is simply the overhead in identifying { and Basic Compressor

code options for the n blocks.

But by (2-32) we have

1 n
%Z E{Ylo(Fg)} = %Z Y'D(f‘%) (&9
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Using the binary memoryless assumption and recalling the mapping of D into 5(.’

Flis given as

¢

Fy= e{rih -1, 2

4 3 2
L[p§+ l4pg(l -pg) + 51p§(1 -pg)

+54p, (1 - p{’)3 + 1601 - pg)4] (A-10)
where quite obviously

Fl< ! for >1 (A-11)
2 ? Pp= 3

identifying the choice of ¢y as in (A-4).

Substituting F% in the yk(‘) of (2-23) - (2-26) we see that each function is
a multiple of block size (ignoring truncation). Thus choosing the minimum in
(2-28) is independent of block size. Operator decisions, ID, are the same for
each ¢ the n blocks. Then the right hand side of (A-9) can more simply be
replaccd by a single T/4 sample Basic Compressor block with expected funda-

mental sequence length given by EFE’ in (A-3) with { determined by (A-4).

Comment

The reduction of the righthand side of (A-9) to a single Basic Compressor
block should come as no surprise. Because of the ideal memoryless model,
data statistics do not change over D. There is no advantage to adapting because
the extra code blocks just cost in overhead (i.e., 2n/T in A-8). Howecver,

if dats statistics were actually changing over D, as in many practical situations,

the extra adaptivity might more than make up for the additional overhead,
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APPENDIX B
STATISTICAL PERFORMANCE BOUND

ON 4418,] = 5,18,

Here we provide a bound to the expected bits/sample required to code éé
where é(_, is the result of the SPLIT[-]operator on 54 for operator qbg[ -Jor
4,?3,[-] in Figs. 5-8 and 5-9 respectively, and T-sample input sequence D is
assumed to be the result of a binary memoryless source with a priori unknown

but constant probability of a zero, p, (over D). Operator Yo [-1= q;C[ -} from

(2-70) will be assumed to consist of cnly one Basic Compressor block, equal in

length to“]’(ég).
The desired result is of the form {see B-10)
1 T y T ,
173 E{rlel® 1)} = Agley 3) (B-1)
whereT
. 1
‘0 if Pg z 3
L = l (B-2)
1 otherwise
pg = a = max (pO, 1 - po) (B-3)
and
.
pz_"o =b= Pz-‘ (B-4)

TWe recognize pé as the probability of a zero in any bit position of A;. That is,

after the decisién y. Similarly, py,g is the probability of an all zero 4-tuple
symbol in &¢. The additional notation a, b is provided to allow easier usage
in the main text.
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DERIVATION OF Ae(pt, T/4)

By (2-28) and (2-39)

E{2(bBl)} =2 +v,,(Fy, Tg) (B-5)
where
Fy = E{2 (¢ [60])} (B-6)
and as in (4-9)
Tq - E{fl(ég)} T o) (B-7)
E

The expression in (B-3) is easily evaluated by noting that a sample of 5(_,
of value i will contribute i bits to the fundamental sequence for 6{,‘ Then by

summing the expected contributions for all T/4 samples we have

T

= 3 2 2

+ 50p§(l - pt‘)3 + 15(1 - p§)4]

f‘e can be written into a more convenient form by factoring out Py, o
?

yielding
) f‘e = .Te 2, (B-8)
where
1-p
Y P 3 2., _ . 2
§ ¢ (l - pg,o) {IOpta + 45p(’(1 pg) + 50p§(1 p(’)
+15(1 - p§)3} (B-9)
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Bound Expression

Substituting (B-3) and (B-6) into (B-2) 1sing (2-23) - (2-27)T we get after

simplification

T T, _ = .7 §2
ZAG(pg’ Z)—2+Jem1n{39§-2,§2€, —3§-+2, 4} (B-10)

and we observe that this bound may be replaced by zero if pg is precisely

1 (there would be no ég samples).

?Note that Y3 = 4 for this problem.
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